Cargando…
Just another “Clever Hans”? Neural networks and FDG PET-CT to predict the outcome of patients with breast cancer
BACKGROUND: Manual quantification of the metabolic tumor volume (MTV) from whole-body (18)F-FDG PET/CT is time consuming and therefore usually not applied in clinical routine. It has been shown that neural networks might assist nuclear medicine physicians in such quantification tasks. However, littl...
Autores principales: | Weber, Manuel, Kersting, David, Umutlu, Lale, Schäfers, Michael, Rischpler, Christoph, Fendler, Wolfgang P., Buvat, Irène, Herrmann, Ken, Seifert, Robert |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8426242/ https://www.ncbi.nlm.nih.gov/pubmed/33674891 http://dx.doi.org/10.1007/s00259-021-05270-x |
Ejemplares similares
-
Evaluation of (18)F-FDG PET/CT images acquired with a reduced scan time duration in lymphoma patients using the digital biograph vision
por: Weber, Manuel, et al.
Publicado: (2021) -
Phantom-based acquisition time and image reconstruction parameter optimisation for oncologic FDG PET/CT examinations using a digital system
por: Fragoso Costa, Pedro, et al.
Publicado: (2022) -
Silicon-photomultiplier-based PET/CT reduces the minimum detectable activity of iodine-124
por: Kersting, David, et al.
Publicado: (2021) -
Interim FDG-PET analysis to identify patients with aggressive non-Hodgkin lymphoma who benefit from treatment intensification: a post-hoc analysis of the PETAL trial
por: Seifert, Robert, et al.
Publicado: (2022) -
Artificial intelligence guided enhancement of digital PET: scans as fast as CT?
por: Hosch, René, et al.
Publicado: (2022)