Cargando…
Encephalopathy-causing mutations in Gβ(1) (GNB1) alter regulation of neuronal GIRK channels
Mutations in the GNB1 gene, encoding the Gβ(1) subunit of heterotrimeric G proteins, cause GNB1 Encephalopathy. Patients experience seizures, pointing to abnormal activity of ion channels or neurotransmitter receptors. We studied three Gβ(1) mutations (K78R, I80N and I80T) using computational and fu...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8426278/ https://www.ncbi.nlm.nih.gov/pubmed/34522861 http://dx.doi.org/10.1016/j.isci.2021.103018 |
Sumario: | Mutations in the GNB1 gene, encoding the Gβ(1) subunit of heterotrimeric G proteins, cause GNB1 Encephalopathy. Patients experience seizures, pointing to abnormal activity of ion channels or neurotransmitter receptors. We studied three Gβ(1) mutations (K78R, I80N and I80T) using computational and functional approaches. In heterologous expression models, these mutations did not alter the coupling between G protein-coupled receptors to G(i/o), or the Gβγ regulation of the neuronal voltage-gated Ca(2+) channel Ca(V)2.2. However, the mutations profoundly affected the Gβγ regulation of the G protein-gated inwardly rectifying potassium channels (GIRK, or Kir3). Changes were observed in Gβ(1) protein expression levels, Gβγ binding to cytosolic segments of GIRK subunits, and in Gβγ function, and included gain-of-function for K78R or loss-of-function for I80T/N, which were GIRK subunit-specific. Our findings offer new insights into subunit-dependent gating of GIRKs by Gβγ, and indicate diverse etiology of GNB1 Encephalopathy cases, bearing a potential for personalized treatment. |
---|