Cargando…

Amygdalar endocannabinoids are affected by predator odor stress in a sex-specific manner and modulate acoustic startle reactivity in female rats

Understanding sex differences in behavioral and molecular effects of stress has important implications for understanding the vulnerability to chronic psychiatric disorders associated with stress response circuitry. The amygdala is critical for emotional learning and generating behavioral responses t...

Descripción completa

Detalles Bibliográficos
Autores principales: Albrechet-Souza, Lucas, Nastase, Andrei S., Hill, Matthew N., Gilpin, Nicholas W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8426281/
https://www.ncbi.nlm.nih.gov/pubmed/34522703
http://dx.doi.org/10.1016/j.ynstr.2021.100387
_version_ 1783750010156875776
author Albrechet-Souza, Lucas
Nastase, Andrei S.
Hill, Matthew N.
Gilpin, Nicholas W.
author_facet Albrechet-Souza, Lucas
Nastase, Andrei S.
Hill, Matthew N.
Gilpin, Nicholas W.
author_sort Albrechet-Souza, Lucas
collection PubMed
description Understanding sex differences in behavioral and molecular effects of stress has important implications for understanding the vulnerability to chronic psychiatric disorders associated with stress response circuitry. The amygdala is critical for emotional learning and generating behavioral responses to stressful stimuli, and preclinical studies indicate that amygdalar endocannabinoid (eCB) signaling regulates emotional states. This study measured eCB contents in the basolateral (BLA) and central (CeA) amygdala of male and female rats exposed to predator odor stress (bobcat urine) and tested for contextual avoidance 24 h later. Stressed females had lower levels of 2-arachidonoyl glycerol (2-AG) in the BLA and higher levels of anandamide (AEA) in the CeA, while exposure to bobcat urine did not affect amygdalar eCB contents in males. We previously reported that female rats exposed to bobcat urine exhibit blunted acoustic startle reactivity (ASR) 48 h after predator odor stress. Therefore, we tested the hypothesis that intra-BLA injection of a diacylglycerol lipase (DAGL) inhibitor (which would be expected to reduce 2-AG levels in BLA) and intra-CeA injection of a fatty acid amide hydrolase (FAAH) inhibitor (which would be expected to increase AEA levels in CeA) would mimic previously observed predator odor stress-induced reductions in ASR. Contrary to our hypothesis, microinjections of either the DAGL inhibitor DO34 into the BLA or the FAAH inhibitor URB597 into the CeA significantly increased ASR in females compared to vehicle-treated rats. These findings describe sex-specific effects of predator odor stress on amygdalar eCBs, and new roles for amygdalar eCBs in regulating behavior in females.
format Online
Article
Text
id pubmed-8426281
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-84262812021-09-13 Amygdalar endocannabinoids are affected by predator odor stress in a sex-specific manner and modulate acoustic startle reactivity in female rats Albrechet-Souza, Lucas Nastase, Andrei S. Hill, Matthew N. Gilpin, Nicholas W. Neurobiol Stress Original Research Article Understanding sex differences in behavioral and molecular effects of stress has important implications for understanding the vulnerability to chronic psychiatric disorders associated with stress response circuitry. The amygdala is critical for emotional learning and generating behavioral responses to stressful stimuli, and preclinical studies indicate that amygdalar endocannabinoid (eCB) signaling regulates emotional states. This study measured eCB contents in the basolateral (BLA) and central (CeA) amygdala of male and female rats exposed to predator odor stress (bobcat urine) and tested for contextual avoidance 24 h later. Stressed females had lower levels of 2-arachidonoyl glycerol (2-AG) in the BLA and higher levels of anandamide (AEA) in the CeA, while exposure to bobcat urine did not affect amygdalar eCB contents in males. We previously reported that female rats exposed to bobcat urine exhibit blunted acoustic startle reactivity (ASR) 48 h after predator odor stress. Therefore, we tested the hypothesis that intra-BLA injection of a diacylglycerol lipase (DAGL) inhibitor (which would be expected to reduce 2-AG levels in BLA) and intra-CeA injection of a fatty acid amide hydrolase (FAAH) inhibitor (which would be expected to increase AEA levels in CeA) would mimic previously observed predator odor stress-induced reductions in ASR. Contrary to our hypothesis, microinjections of either the DAGL inhibitor DO34 into the BLA or the FAAH inhibitor URB597 into the CeA significantly increased ASR in females compared to vehicle-treated rats. These findings describe sex-specific effects of predator odor stress on amygdalar eCBs, and new roles for amygdalar eCBs in regulating behavior in females. Elsevier 2021-09-03 /pmc/articles/PMC8426281/ /pubmed/34522703 http://dx.doi.org/10.1016/j.ynstr.2021.100387 Text en Published by Elsevier Inc. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Original Research Article
Albrechet-Souza, Lucas
Nastase, Andrei S.
Hill, Matthew N.
Gilpin, Nicholas W.
Amygdalar endocannabinoids are affected by predator odor stress in a sex-specific manner and modulate acoustic startle reactivity in female rats
title Amygdalar endocannabinoids are affected by predator odor stress in a sex-specific manner and modulate acoustic startle reactivity in female rats
title_full Amygdalar endocannabinoids are affected by predator odor stress in a sex-specific manner and modulate acoustic startle reactivity in female rats
title_fullStr Amygdalar endocannabinoids are affected by predator odor stress in a sex-specific manner and modulate acoustic startle reactivity in female rats
title_full_unstemmed Amygdalar endocannabinoids are affected by predator odor stress in a sex-specific manner and modulate acoustic startle reactivity in female rats
title_short Amygdalar endocannabinoids are affected by predator odor stress in a sex-specific manner and modulate acoustic startle reactivity in female rats
title_sort amygdalar endocannabinoids are affected by predator odor stress in a sex-specific manner and modulate acoustic startle reactivity in female rats
topic Original Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8426281/
https://www.ncbi.nlm.nih.gov/pubmed/34522703
http://dx.doi.org/10.1016/j.ynstr.2021.100387
work_keys_str_mv AT albrechetsouzalucas amygdalarendocannabinoidsareaffectedbypredatorodorstressinasexspecificmannerandmodulateacousticstartlereactivityinfemalerats
AT nastaseandreis amygdalarendocannabinoidsareaffectedbypredatorodorstressinasexspecificmannerandmodulateacousticstartlereactivityinfemalerats
AT hillmatthewn amygdalarendocannabinoidsareaffectedbypredatorodorstressinasexspecificmannerandmodulateacousticstartlereactivityinfemalerats
AT gilpinnicholasw amygdalarendocannabinoidsareaffectedbypredatorodorstressinasexspecificmannerandmodulateacousticstartlereactivityinfemalerats