Cargando…
Autofluorescence-spectral imaging as an innovative method for rapid, non-destructive and reliable assessing of soybean seed quality
In the agricultural industry, advances in optical imaging technologies based on rapid and non-destructive approaches have contributed to increase food production for the growing population. The present study employed autofluorescence-spectral imaging and machine learning algorithms to develop distin...
Autores principales: | Barboza da Silva, Clíssia, Oliveira, Nielsen Moreira, de Carvalho, Marcia Eugenia Amaral, de Medeiros, André Dantas, de Lima Nogueira, Marina, dos Reis, André Rodrigues |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8426380/ https://www.ncbi.nlm.nih.gov/pubmed/34497292 http://dx.doi.org/10.1038/s41598-021-97223-5 |
Ejemplares similares
-
A Reliable Method to Recognize Soybean Seed Maturation Stages Based on Autofluorescence-Spectral Imaging Combined With Machine Learning Algorithms
por: Batista, Thiago Barbosa, et al.
Publicado: (2022) -
Interactive machine learning for soybean seed and seedling quality classification
por: de Medeiros, André Dantas, et al.
Publicado: (2020) -
Fungal identification in peanuts seeds through multispectral images: Technological advances to enhance sanitary quality
por: Sudki, Julia Marconato, et al.
Publicado: (2023) -
Detection of Drechslera avenae (Eidam) Sharif [Helminthosporium avenae (Eidam)] in Black Oat Seeds (Avena strigosa Schreb) Using Multispectral Imaging
por: França-Silva, Fabiano, et al.
Publicado: (2020) -
Machine Learning for Seed Quality Classification: An Advanced Approach Using Merger Data from FT-NIR Spectroscopy and X-ray Imaging
por: de Medeiros, André Dantas, et al.
Publicado: (2020)