Cargando…
Acute effect of whole-body vibration on electromechanical delay and vertical jump performance
OBJECTIVES: To determine if a change in vertical jump performance from acute whole-body vibration can be explained by indirectly assessing spindle sensitivity from electromechanical delay. METHODS: Using a counter-balanced design, twenty college-aged participants performed whole-body vibration (WBV)...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Society of Musculoskeletal and Neuronal Interactions
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8426659/ https://www.ncbi.nlm.nih.gov/pubmed/34465676 |
Sumario: | OBJECTIVES: To determine if a change in vertical jump performance from acute whole-body vibration can be explained by indirectly assessing spindle sensitivity from electromechanical delay. METHODS: Using a counter-balanced design, twenty college-aged participants performed whole-body vibration (WBV) and control treatments. WBV included 10 intervals (26 Hz, 3.6 mm) of 60 s in a half-squat followed by 60 s of rest. After 5 intervals, participants rested for 6-minutes before commencing the final 5 intervals. For the control, the exact same protocol of whole-body vibration was performed but without vibration. Electromechanical delay and vertical jump were assessed at baseline, during the 6-minute rest period and immediately after whole-body vibration and control. RESULTS: There were no differences between treatments, for both electromechanical delay (F(2, 38)=1.385, p=0.263) and vertical jump (F(2, 38)=0.040, p<0.96). Whole-body vibration had no effect on vertical jump performance. CONCLUSION: The current whole-body vibration protocol is not effective for acute vertical jump or electromechanical delay enhancement. Also, since there was no effect on electromechanical delay, this suggests that whole-body vibration did not enhance muscle spindle sensitivity for the parameters examined. |
---|