Cargando…

Phenotypic characterization of patients with activated PI3Kδ syndrome 1 presenting with features of systemic lupus erythematosus

Activated phosphoinositide 3-kinase δ syndrome 1 (APDS1) is a primary immunodeficiency disease caused by gain-of-function mutations in PIK3CD. Clinical features of autoimmune disease have been reported in patients with APDS1. In this study, we reported three patients with APDS1 presenting with syste...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Yanping, Yang, Qiuyun, Chen, Xuemei, Tang, Wenjing, Zhou, Lina, Chen, Zhi, An, Yunfei, Zhang, Zhiyong, Tang, Xuemei, Zhao, Xiaodong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Chongqing Medical University 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8427252/
https://www.ncbi.nlm.nih.gov/pubmed/34522717
http://dx.doi.org/10.1016/j.gendis.2020.04.012
Descripción
Sumario:Activated phosphoinositide 3-kinase δ syndrome 1 (APDS1) is a primary immunodeficiency disease caused by gain-of-function mutations in PIK3CD. Clinical features of autoimmune disease have been reported in patients with APDS1. In this study, we reported three patients with APDS1 presenting with systemic lupus erythematosus (SLE) phenotype. The clinical manifestations included recurrent respiratory tract infection, lymphoproliferation, Coombs-positive hemolytic anemia, decreased complement fractions, positive antinuclear antibodies, renal complications related to SLE associated diseases, which met the clinical spectrum of APDS1 and the classification criteria of SLE. The immunological phenotype included an inversion in the CD4:CD8 ratio, an increase in both non-circulating Tfh CD4(+) memory T and circulating Tfh populations, a low level of recent thymic emigrant T cells, overexpression of CD57 on T cells, and a decrease in B cells with fewer antibody class switch recombination. These phenotypes detected in patients with APDS1 presenting with SLE were resemble that in patients with APDS1 presenting without SLE. Meanwhile, we described the effect of glucocorticoids and rapamycin therapy on patients with APDS1. The phosphorylation of S6 at Ser235/236 was inhibited in patients with APDS1 who underwent glucocorticoids therapy, including two who presented with SLE phenotype. The phosphorylation of AKT at Ser473 and phosphorylation of S6 at Ser235/236 were inhibited in other patients with APDS1 who underwent rapamycin therapy. Here, we showed the coexistence of immunodeficiency and SLE phenotype in APDS1, and the inhibition of rapamycin in activated Akt-mTOR signaling pathway.