Cargando…
Optimized Machine Learning Models to Predict In-Hospital Mortality for Patients with ST-Segment Elevation Myocardial Infarction
PURPOSE: This study aimed to optimize machine learning (ML) models for predicting in-hospital mortality in patients with ST-segment elevation acute myocardial infarction (STEMI). PATIENTS AND METHODS: A total of 5708 STEMI patients were enrolled and divided into two groups according to patients’ hos...
Autores principales: | Zhao, Jia, Zhao, Pengyu, Li, Chunjie, Hou, Yonghong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8427294/ https://www.ncbi.nlm.nih.gov/pubmed/34511920 http://dx.doi.org/10.2147/TCRM.S321799 |
Ejemplares similares
-
Machine learning to predict no reflow and in-hospital mortality in patients with ST-segment elevation myocardial infarction that underwent primary percutaneous coronary intervention
por: Deng, Lianxiang, et al.
Publicado: (2022) -
Characteristics and mechanism of reciprocal ST-segment depression in acute ST segment elevation myocardial infarction: Reciprocal ST-segment depression and ST segment elevation myocardial infarction
por: Gao, Qijun, et al.
Publicado: (2022) -
Anemia and Inflammation in ST-Segment Elevation Myocardial Infarction
por: Zhang, Enyuan, et al.
Publicado: (2015) -
Gender differences in mortality in patients with ST-segment elevation myocardial infarction
por: Raymundo-Martínez, Grecia I.M., et al.
Publicado: (2021) -
Distribution Characteristics of ST-Segment Elevation Myocardial Infarction and Non-ST-Segment Elevation Myocardial Infarction Culprit Lesion in Acute Myocardial Infarction Patients Based on Coronary Angiography Diagnosis
por: Cao, Guanglin, et al.
Publicado: (2022)