Cargando…

Digital Microfluidics Chips for the Execution and Real-Time Monitoring of Multiple Ribozymatic Cleavage Reactions

[Image: see text] In this paper, we describe the design and performance of two digital microfluidics (DMF) chips capable of executing multiple ribozymatic reactions, with proper controls, in response to short single-stranded DNA inducers. Since the fluorescence output of a reaction is measurable dir...

Descripción completa

Detalles Bibliográficos
Autores principales: Davis, Alen N., Samlali, Kenza, Kapadia, Jay B., Perreault, Jonathan, Shih, Steve C. C., Kharma, Nawwaf
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8427639/
https://www.ncbi.nlm.nih.gov/pubmed/34514224
http://dx.doi.org/10.1021/acsomega.1c00239
Descripción
Sumario:[Image: see text] In this paper, we describe the design and performance of two digital microfluidics (DMF) chips capable of executing multiple ribozymatic reactions, with proper controls, in response to short single-stranded DNA inducers. Since the fluorescence output of a reaction is measurable directly from the chip, without the need for gel electrophoresis, a complete experiment involving up to eight reactions (per chip) can be carried out reliably, relatively quickly, and efficiently. The ribozymes can also be used as biosensors of the concentration of oligonucleotide inputs, with high sensitivity, low limits of quantification and of detection, and excellent signal-to-noise ratio. The presented chips are readily usable devices that can be used to automate, speed up, and reduce the costs of ribozymatic reaction experiments.