Cargando…
Digital Microfluidics Chips for the Execution and Real-Time Monitoring of Multiple Ribozymatic Cleavage Reactions
[Image: see text] In this paper, we describe the design and performance of two digital microfluidics (DMF) chips capable of executing multiple ribozymatic reactions, with proper controls, in response to short single-stranded DNA inducers. Since the fluorescence output of a reaction is measurable dir...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8427639/ https://www.ncbi.nlm.nih.gov/pubmed/34514224 http://dx.doi.org/10.1021/acsomega.1c00239 |
_version_ | 1783750217251684352 |
---|---|
author | Davis, Alen N. Samlali, Kenza Kapadia, Jay B. Perreault, Jonathan Shih, Steve C. C. Kharma, Nawwaf |
author_facet | Davis, Alen N. Samlali, Kenza Kapadia, Jay B. Perreault, Jonathan Shih, Steve C. C. Kharma, Nawwaf |
author_sort | Davis, Alen N. |
collection | PubMed |
description | [Image: see text] In this paper, we describe the design and performance of two digital microfluidics (DMF) chips capable of executing multiple ribozymatic reactions, with proper controls, in response to short single-stranded DNA inducers. Since the fluorescence output of a reaction is measurable directly from the chip, without the need for gel electrophoresis, a complete experiment involving up to eight reactions (per chip) can be carried out reliably, relatively quickly, and efficiently. The ribozymes can also be used as biosensors of the concentration of oligonucleotide inputs, with high sensitivity, low limits of quantification and of detection, and excellent signal-to-noise ratio. The presented chips are readily usable devices that can be used to automate, speed up, and reduce the costs of ribozymatic reaction experiments. |
format | Online Article Text |
id | pubmed-8427639 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-84276392021-09-10 Digital Microfluidics Chips for the Execution and Real-Time Monitoring of Multiple Ribozymatic Cleavage Reactions Davis, Alen N. Samlali, Kenza Kapadia, Jay B. Perreault, Jonathan Shih, Steve C. C. Kharma, Nawwaf ACS Omega [Image: see text] In this paper, we describe the design and performance of two digital microfluidics (DMF) chips capable of executing multiple ribozymatic reactions, with proper controls, in response to short single-stranded DNA inducers. Since the fluorescence output of a reaction is measurable directly from the chip, without the need for gel electrophoresis, a complete experiment involving up to eight reactions (per chip) can be carried out reliably, relatively quickly, and efficiently. The ribozymes can also be used as biosensors of the concentration of oligonucleotide inputs, with high sensitivity, low limits of quantification and of detection, and excellent signal-to-noise ratio. The presented chips are readily usable devices that can be used to automate, speed up, and reduce the costs of ribozymatic reaction experiments. American Chemical Society 2021-08-25 /pmc/articles/PMC8427639/ /pubmed/34514224 http://dx.doi.org/10.1021/acsomega.1c00239 Text en © 2021 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Davis, Alen N. Samlali, Kenza Kapadia, Jay B. Perreault, Jonathan Shih, Steve C. C. Kharma, Nawwaf Digital Microfluidics Chips for the Execution and Real-Time Monitoring of Multiple Ribozymatic Cleavage Reactions |
title | Digital Microfluidics Chips for the Execution and
Real-Time Monitoring of Multiple Ribozymatic Cleavage Reactions |
title_full | Digital Microfluidics Chips for the Execution and
Real-Time Monitoring of Multiple Ribozymatic Cleavage Reactions |
title_fullStr | Digital Microfluidics Chips for the Execution and
Real-Time Monitoring of Multiple Ribozymatic Cleavage Reactions |
title_full_unstemmed | Digital Microfluidics Chips for the Execution and
Real-Time Monitoring of Multiple Ribozymatic Cleavage Reactions |
title_short | Digital Microfluidics Chips for the Execution and
Real-Time Monitoring of Multiple Ribozymatic Cleavage Reactions |
title_sort | digital microfluidics chips for the execution and
real-time monitoring of multiple ribozymatic cleavage reactions |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8427639/ https://www.ncbi.nlm.nih.gov/pubmed/34514224 http://dx.doi.org/10.1021/acsomega.1c00239 |
work_keys_str_mv | AT davisalenn digitalmicrofluidicschipsfortheexecutionandrealtimemonitoringofmultipleribozymaticcleavagereactions AT samlalikenza digitalmicrofluidicschipsfortheexecutionandrealtimemonitoringofmultipleribozymaticcleavagereactions AT kapadiajayb digitalmicrofluidicschipsfortheexecutionandrealtimemonitoringofmultipleribozymaticcleavagereactions AT perreaultjonathan digitalmicrofluidicschipsfortheexecutionandrealtimemonitoringofmultipleribozymaticcleavagereactions AT shihstevecc digitalmicrofluidicschipsfortheexecutionandrealtimemonitoringofmultipleribozymaticcleavagereactions AT kharmanawwaf digitalmicrofluidicschipsfortheexecutionandrealtimemonitoringofmultipleribozymaticcleavagereactions |