Cargando…
Structural Compression of Convolutional Neural Networks with Applications in Interpretability
Deep convolutional neural networks (CNNs) have been successful in many tasks in machine vision, however, millions of weights in the form of thousands of convolutional filters in CNNs make them difficult for human interpretation or understanding in science. In this article, we introduce a greedy stru...
Autores principales: | Abbasi-Asl, Reza, Yu, Bin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8427695/ https://www.ncbi.nlm.nih.gov/pubmed/34514381 http://dx.doi.org/10.3389/fdata.2021.704182 |
Ejemplares similares
-
Kernel-wise difference minimization for convolutional neural network compression in metaverse
por: Chang, Yi-Ting
Publicado: (2023) -
Real-time arrhythmia detection using convolutional neural networks
por: Vu, Thong, et al.
Publicado: (2023) -
Non-invasive detection of anemia using lip mucosa images transfer learning convolutional neural networks
por: Mansour, Mohammed, et al.
Publicado: (2023) -
Proximity-Based Compression for Network Embedding
por: Islam, Muhammad Ifte, et al.
Publicado: (2021) -
Adaptive granularity in tensors: A quest for interpretable structure
por: Pasricha, Ravdeep S., et al.
Publicado: (2022)