Cargando…
A Novel Scalarized Scaffold Hopping Algorithm with Graph-Based Variational Autoencoder for Discovery of JAK1 Inhibitors
[Image: see text] We have developed a graph-based Variational Autoencoder with Gaussian Mixture hidden space (GraphGMVAE), a deep learning approach for controllable magnitude of scaffold hopping in generative chemistry. It can effectively and accurately generate molecules from a given reference comp...
Autores principales: | Yu, Yang, Xu, Tingyang, Li, Jiawen, Qiu, Yaping, Rong, Yu, Gong, Zhen, Cheng, Xuemin, Dong, Liming, Liu, Wei, Li, Jin, Dou, Dengfeng, Huang, Junzhou |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8427782/ https://www.ncbi.nlm.nih.gov/pubmed/34514265 http://dx.doi.org/10.1021/acsomega.1c03613 |
Ejemplares similares
-
ScaffoldGVAE: scaffold generation and hopping of drug molecules via a variational autoencoder based on multi-view graph neural networks
por: Hu, Chao, et al.
Publicado: (2023) -
Graph Autoencoder with Preserving Node Attribute Similarity
por: Lin, Mugang, et al.
Publicado: (2023) -
Efficient learning of non-autoregressive graph variational autoencoders for molecular graph generation
por: Kwon, Youngchun, et al.
Publicado: (2019) -
IRC-Safe Graph Autoencoder for Unsupervised Anomaly Detection
por: Atkinson, Oliver, et al.
Publicado: (2022) -
New Lead Discovery of Herbicide Safener for Metolachlor Based on a Scaffold-Hopping Strategy
por: Deng, Xile, et al.
Publicado: (2020)