Cargando…
Research on RNA secondary structure predicting via bidirectional recurrent neural network
BACKGROUND: RNA secondary structure prediction is an important research content in the field of biological information. Predicting RNA secondary structure with pseudoknots has been proved to be an NP-hard problem. Traditional machine learning methods can not effectively apply protein sequence inform...
Autores principales: | Lu, Weizhong, Cao, Yan, Wu, Hongjie, Ding, Yijie, Song, Zhengwei, Zhang, Yu, Fu, Qiming, Li, Haiou |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8427827/ https://www.ncbi.nlm.nih.gov/pubmed/34496763 http://dx.doi.org/10.1186/s12859-021-04332-z |
Ejemplares similares
-
Predicting RNA secondary structure via adaptive deep recurrent neural networks with energy-based filter
por: Lu, Weizhong, et al.
Publicado: (2019) -
Ranking near-native candidate protein structures via random forest classification
por: Wu, Hongjie, et al.
Publicado: (2019) -
Application of DNA-Binding Protein Prediction Based on Graph Convolutional Network and Contact Map
por: Lu, Weizhong, et al.
Publicado: (2022) -
Use Chou's 5-Step Rule to Predict DNA-Binding Proteins with Evolutionary Information
por: Lu, Weizhong, et al.
Publicado: (2020) -
Research on predicting 2D-HP protein folding using reinforcement learning with full state space
por: Wu, Hongjie, et al.
Publicado: (2019)