Cargando…
Deep Learning-Based Available and Common Clinical-Related Feature Variables Robustly Predict Survival in Community-Acquired Pneumonia
BACKGROUND: Community-acquired pneumonia (CAP) is a leading cause of morbidity and mortality worldwide. Although there are many predictors of death for CAP, there are still some limitations. This study aimed to build a simple and accurate model based on available and common clinical-related feature...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8427836/ https://www.ncbi.nlm.nih.gov/pubmed/34512057 http://dx.doi.org/10.2147/RMHP.S317735 |
_version_ | 1783750254796996608 |
---|---|
author | Feng, Ding-Yun Ren, Yong Zhou, Mi Zou, Xiao-Ling Wu, Wen-Bin Yang, Hai-Ling Zhou, Yu-Qi Zhang, Tian-Tuo |
author_facet | Feng, Ding-Yun Ren, Yong Zhou, Mi Zou, Xiao-Ling Wu, Wen-Bin Yang, Hai-Ling Zhou, Yu-Qi Zhang, Tian-Tuo |
author_sort | Feng, Ding-Yun |
collection | PubMed |
description | BACKGROUND: Community-acquired pneumonia (CAP) is a leading cause of morbidity and mortality worldwide. Although there are many predictors of death for CAP, there are still some limitations. This study aimed to build a simple and accurate model based on available and common clinical-related feature variables for predicting CAP mortality by adopting machine learning techniques. METHODS: This was a single-center retrospective study. The data used in this study were collected from all patients (≥18 years) with CAP admitted to research hospitals between January 2012 and April 2020. Each patient had 62 clinical-related features, including clinical diagnostic and treatment features. Patients were divided into two endpoints, and by using Tensorflow2.4.1 as the modeling framework, a three-layer fully connected neural network (FCNN) was built as a base model for classification. For a comprehensive comparison, seven classical machine learning methods and their integrated stacking patterns were introduced to model and compare the same training and test data. RESULTS: A total of 3997 patients with CAP were included; 205 (5.12%) died in the hospital. After performing deep learning methods, this study established an ensemble FCNN model based on 12 FCNNs. By comparing with seven classical machine learning methods, the area under the curve of the ensemble FCNN was 0.975 when using deep learning algorithms to classify poor from good prognosis based on available and common clinical-related feature variables. The predicted outcome was poor prognosis if the ControlNet’s poor prognosis score was greater than the cutoff value of 0.50. To confirm the scientificity of the ensemble FCNN model, this study analyzed the weight of random forest features and found that mainstream prognostic features still held weight, although the model is perfect after integrating other factors considered less important by previous studies. CONCLUSION: This study used deep learning algorithms to classify prognosis based on available and common clinical-related feature variables in patients with CAP with high accuracy and good generalizability. Every clinical-related feature is important to the model. |
format | Online Article Text |
id | pubmed-8427836 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Dove |
record_format | MEDLINE/PubMed |
spelling | pubmed-84278362021-09-10 Deep Learning-Based Available and Common Clinical-Related Feature Variables Robustly Predict Survival in Community-Acquired Pneumonia Feng, Ding-Yun Ren, Yong Zhou, Mi Zou, Xiao-Ling Wu, Wen-Bin Yang, Hai-Ling Zhou, Yu-Qi Zhang, Tian-Tuo Risk Manag Healthc Policy Original Research BACKGROUND: Community-acquired pneumonia (CAP) is a leading cause of morbidity and mortality worldwide. Although there are many predictors of death for CAP, there are still some limitations. This study aimed to build a simple and accurate model based on available and common clinical-related feature variables for predicting CAP mortality by adopting machine learning techniques. METHODS: This was a single-center retrospective study. The data used in this study were collected from all patients (≥18 years) with CAP admitted to research hospitals between January 2012 and April 2020. Each patient had 62 clinical-related features, including clinical diagnostic and treatment features. Patients were divided into two endpoints, and by using Tensorflow2.4.1 as the modeling framework, a three-layer fully connected neural network (FCNN) was built as a base model for classification. For a comprehensive comparison, seven classical machine learning methods and their integrated stacking patterns were introduced to model and compare the same training and test data. RESULTS: A total of 3997 patients with CAP were included; 205 (5.12%) died in the hospital. After performing deep learning methods, this study established an ensemble FCNN model based on 12 FCNNs. By comparing with seven classical machine learning methods, the area under the curve of the ensemble FCNN was 0.975 when using deep learning algorithms to classify poor from good prognosis based on available and common clinical-related feature variables. The predicted outcome was poor prognosis if the ControlNet’s poor prognosis score was greater than the cutoff value of 0.50. To confirm the scientificity of the ensemble FCNN model, this study analyzed the weight of random forest features and found that mainstream prognostic features still held weight, although the model is perfect after integrating other factors considered less important by previous studies. CONCLUSION: This study used deep learning algorithms to classify prognosis based on available and common clinical-related feature variables in patients with CAP with high accuracy and good generalizability. Every clinical-related feature is important to the model. Dove 2021-09-04 /pmc/articles/PMC8427836/ /pubmed/34512057 http://dx.doi.org/10.2147/RMHP.S317735 Text en © 2021 Feng et al. https://creativecommons.org/licenses/by-nc/3.0/This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/ (https://creativecommons.org/licenses/by-nc/3.0/) ). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php). |
spellingShingle | Original Research Feng, Ding-Yun Ren, Yong Zhou, Mi Zou, Xiao-Ling Wu, Wen-Bin Yang, Hai-Ling Zhou, Yu-Qi Zhang, Tian-Tuo Deep Learning-Based Available and Common Clinical-Related Feature Variables Robustly Predict Survival in Community-Acquired Pneumonia |
title | Deep Learning-Based Available and Common Clinical-Related Feature Variables Robustly Predict Survival in Community-Acquired Pneumonia |
title_full | Deep Learning-Based Available and Common Clinical-Related Feature Variables Robustly Predict Survival in Community-Acquired Pneumonia |
title_fullStr | Deep Learning-Based Available and Common Clinical-Related Feature Variables Robustly Predict Survival in Community-Acquired Pneumonia |
title_full_unstemmed | Deep Learning-Based Available and Common Clinical-Related Feature Variables Robustly Predict Survival in Community-Acquired Pneumonia |
title_short | Deep Learning-Based Available and Common Clinical-Related Feature Variables Robustly Predict Survival in Community-Acquired Pneumonia |
title_sort | deep learning-based available and common clinical-related feature variables robustly predict survival in community-acquired pneumonia |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8427836/ https://www.ncbi.nlm.nih.gov/pubmed/34512057 http://dx.doi.org/10.2147/RMHP.S317735 |
work_keys_str_mv | AT fengdingyun deeplearningbasedavailableandcommonclinicalrelatedfeaturevariablesrobustlypredictsurvivalincommunityacquiredpneumonia AT renyong deeplearningbasedavailableandcommonclinicalrelatedfeaturevariablesrobustlypredictsurvivalincommunityacquiredpneumonia AT zhoumi deeplearningbasedavailableandcommonclinicalrelatedfeaturevariablesrobustlypredictsurvivalincommunityacquiredpneumonia AT zouxiaoling deeplearningbasedavailableandcommonclinicalrelatedfeaturevariablesrobustlypredictsurvivalincommunityacquiredpneumonia AT wuwenbin deeplearningbasedavailableandcommonclinicalrelatedfeaturevariablesrobustlypredictsurvivalincommunityacquiredpneumonia AT yanghailing deeplearningbasedavailableandcommonclinicalrelatedfeaturevariablesrobustlypredictsurvivalincommunityacquiredpneumonia AT zhouyuqi deeplearningbasedavailableandcommonclinicalrelatedfeaturevariablesrobustlypredictsurvivalincommunityacquiredpneumonia AT zhangtiantuo deeplearningbasedavailableandcommonclinicalrelatedfeaturevariablesrobustlypredictsurvivalincommunityacquiredpneumonia |