Cargando…

The association between expression of lncRNAs in patients with GDM

OBJECTIVE: Gestational diabetes mellitus (GDM) is common worldwide and seriously threatens maternal and infant health. The expression of non-coding (ncRNA) is tissue-specific and highly stable in eukaryotic cells and the circulatory system, which can act as an early molecular marker of GDM. METHODS:...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Yuanyuan, Li, Dongmei, Cheng, Xingbo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Bioscientifica Ltd 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8428044/
https://www.ncbi.nlm.nih.gov/pubmed/34289446
http://dx.doi.org/10.1530/EC-21-0227
Descripción
Sumario:OBJECTIVE: Gestational diabetes mellitus (GDM) is common worldwide and seriously threatens maternal and infant health. The expression of non-coding (ncRNA) is tissue-specific and highly stable in eukaryotic cells and the circulatory system, which can act as an early molecular marker of GDM. METHODS: The differential expression of lncRNA and mRNA in the peripheral blood of patients with GDM (experimental group) and healthy pregnant women (control group) was analysed via lncRNA gene chip. Employing biological function clustering and KEGG signalling pathway analysis, we selected the mRNAs and lncRNAs closely related to the insulin signalling pathway of GDM to analyse the possible regulatory mechanism in the pathogenesis of GDM. The sequencing results were further verified via quantitative PCR (Q-PCR). RESULTS: LncRNA microarray analysis revealed 7498 genes (3592 upregulated, 3906 downregulated) differentially expressed in the GDM group and healthy pregnant women control group, including 1098 differentially expressed lncRNAs (609 upregulated, 489 downregulated). According to the regulatory pathway of the lncRNA mRNA network, 6 lncRNAs and 4 mRNAs were found to play a significant role in insulin resistance. CONCLUSIONS: The lncRNAs ERMP1, TSPAN32 and MRPL38 form a co-expression network with TPH1, which is mainly involved in the tryptophan metabolism pathway and in the development of GDM. Moreover, lncRNA RPL13P5 forms a co-expression network with the TSC2 gene via the PI3K-AKT and insulin signalling pathways, which are involved in the process of insulin resistance in GDM.