Cargando…

Mercator: a pipeline for multi-method, unsupervised visualization and distance generation

SUMMARY: Unsupervised machine learning provides tools for researchers to uncover latent patterns in large-scale data, based on calculated distances between observations. Methods to visualize high-dimensional data based on these distances can elucidate subtypes and interactions within multi-dimension...

Descripción completa

Detalles Bibliográficos
Autores principales: Abrams, Zachary B., Coombes, Caitlin E., Li, Suli, Coombes, Kevin R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8428582/
https://www.ncbi.nlm.nih.gov/pubmed/33515233
http://dx.doi.org/10.1093/bioinformatics/btab037
Descripción
Sumario:SUMMARY: Unsupervised machine learning provides tools for researchers to uncover latent patterns in large-scale data, based on calculated distances between observations. Methods to visualize high-dimensional data based on these distances can elucidate subtypes and interactions within multi-dimensional and high-throughput data. However, researchers can select from a vast number of distance metrics and visualizations, each with their own strengths and weaknesses. The Mercator R package facilitates selection of a biologically meaningful distance from 10 metrics, together appropriate for binary, categorical and continuous data, and visualization with 5 standard and high-dimensional graphics tools. Mercator provides a user-friendly pipeline for informaticians or biologists to perform unsupervised analyses, from exploratory pattern recognition to production of publication-quality graphics. AVAILABILITYAND IMPLEMENTATION: Mercator is freely available at the Comprehensive R Archive Network (https://cran.r-project.org/web/packages/Mercator/index.html).