Cargando…
Mercator: a pipeline for multi-method, unsupervised visualization and distance generation
SUMMARY: Unsupervised machine learning provides tools for researchers to uncover latent patterns in large-scale data, based on calculated distances between observations. Methods to visualize high-dimensional data based on these distances can elucidate subtypes and interactions within multi-dimension...
Autores principales: | Abrams, Zachary B., Coombes, Caitlin E., Li, Suli, Coombes, Kevin R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8428582/ https://www.ncbi.nlm.nih.gov/pubmed/33515233 http://dx.doi.org/10.1093/bioinformatics/btab037 |
Ejemplares similares
-
Unsupervised machine learning and prognostic factors of survival in chronic lymphocytic leukemia
por: Coombes, Caitlin E, et al.
Publicado: (2020) -
Pattern recognition in lymphoid malignancies using CytoGPS and Mercator
por: Abrams, Zachary B., et al.
Publicado: (2021) -
BioMercator V3: an upgrade of genetic map compilation and quantitative trait loci meta-analysis algorithms
por: Sosnowski, Olivier, et al.
Publicado: (2012) -
CytoGPS: a web-enabled karyotype analysis tool for cytogenetics
por: Abrams, Zachary B, et al.
Publicado: (2019) -
inGAP: an integrated next-generation genome analysis pipeline
por: Qi, Ji, et al.
Publicado: (2010)