Cargando…
Using interpretable deep learning to model cancer dependencies
MOTIVATION: Cancer dependencies provide potential drug targets. Unfortunately, dependencies differ among cancers and even individuals. To this end, visible neural networks (VNNs) are promising due to robust performance and the interpretability required for the biomedical field. RESULTS: We design Bi...
Autores principales: | Lin, Chih-Hsu, Lichtarge, Olivier |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8428607/ https://www.ncbi.nlm.nih.gov/pubmed/34042953 http://dx.doi.org/10.1093/bioinformatics/btab137 |
Ejemplares similares
-
Discovery of disease- and drug-specific pathways through community structures of a literature network
por: Pham, Minh, et al.
Publicado: (2020) -
Genome interpretation using in silico predictors of variant impact
por: Katsonis, Panagiotis, et al.
Publicado: (2022) -
An Interpretable and Expandable Deep Learning Diagnostic System for Multiple Ocular Diseases: Qualitative Study
por: Zhang, Kai, et al.
Publicado: (2018) -
Single nucleotide variations: Biological impact and theoretical interpretation
por: Katsonis, Panagiotis, et al.
Publicado: (2014) -
Interpretable survival prediction for colorectal cancer using deep learning
por: Wulczyn, Ellery, et al.
Publicado: (2021)