Cargando…
Compartor: a toolbox for the automatic generation of moment equations for dynamic compartment populations
SUMMARY: Many biochemical processes in living organisms take place inside compartments that can interact with each other and remodel over time. In a recent work, we have shown how the stochastic dynamics of a compartmentalized biochemical system can be effectively studied using moment equations. Wit...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8428613/ https://www.ncbi.nlm.nih.gov/pubmed/33538766 http://dx.doi.org/10.1093/bioinformatics/btab058 |
Sumario: | SUMMARY: Many biochemical processes in living organisms take place inside compartments that can interact with each other and remodel over time. In a recent work, we have shown how the stochastic dynamics of a compartmentalized biochemical system can be effectively studied using moment equations. With this technique, the time evolution of a compartment population is summarized using a finite number of ordinary differential equations, which can be analyzed very efficiently. However, the derivation of moment equations by hand can become time-consuming for systems comprising multiple reactants and interactions. Here we present Compartor, a toolbox that automatically generates the moment equations associated with a user-defined compartmentalized system. Through the moment equation method, Compartor renders the analysis of stochastic population models accessible to a broader scientific community. AVAILABILITY AND IMPLEMENTATION: Compartor is provided as a Python package and is available at https://pypi.org/project/compartor/. Source code and usage tutorials for Compartor are available at https://github.com/zechnerlab/Compartor. |
---|