Cargando…

Machine Learning augmented docking studies of aminothioureas at the SARS-CoV-2—ACE2 interface

The current pandemic outbreak clearly indicated the urgent need for tools allowing fast predictions of bioactivity of a large number of compounds, either available or at least synthesizable. In the computational chemistry toolbox, several such tools are available, with the main ones being docking an...

Descripción completa

Detalles Bibliográficos
Autores principales: Rola, Monika, Krassowski, Jakub, Górska, Julita, Grobelna, Anna, Płonka, Wojciech, Paneth, Agata, Paneth, Piotr
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8428716/
https://www.ncbi.nlm.nih.gov/pubmed/34499662
http://dx.doi.org/10.1371/journal.pone.0256834
_version_ 1783750431987466240
author Rola, Monika
Krassowski, Jakub
Górska, Julita
Grobelna, Anna
Płonka, Wojciech
Paneth, Agata
Paneth, Piotr
author_facet Rola, Monika
Krassowski, Jakub
Górska, Julita
Grobelna, Anna
Płonka, Wojciech
Paneth, Agata
Paneth, Piotr
author_sort Rola, Monika
collection PubMed
description The current pandemic outbreak clearly indicated the urgent need for tools allowing fast predictions of bioactivity of a large number of compounds, either available or at least synthesizable. In the computational chemistry toolbox, several such tools are available, with the main ones being docking and structure-activity relationship modeling either by classical linear QSAR or Machine Learning techniques. In this contribution, we focus on the comparison of the results obtained using different docking protocols on the example of the search for bioactivity of compounds containing N-N-C(S)-N scaffold at the S-protein of SARS-CoV-2 virus with ACE2 human receptor interface. Based on over 1800 structures in the training set we have predicted binding properties of the complete set of nearly 600000 structures from the same class using the Machine Learning Random Forest Regressor approach.
format Online
Article
Text
id pubmed-8428716
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-84287162021-09-10 Machine Learning augmented docking studies of aminothioureas at the SARS-CoV-2—ACE2 interface Rola, Monika Krassowski, Jakub Górska, Julita Grobelna, Anna Płonka, Wojciech Paneth, Agata Paneth, Piotr PLoS One Research Article The current pandemic outbreak clearly indicated the urgent need for tools allowing fast predictions of bioactivity of a large number of compounds, either available or at least synthesizable. In the computational chemistry toolbox, several such tools are available, with the main ones being docking and structure-activity relationship modeling either by classical linear QSAR or Machine Learning techniques. In this contribution, we focus on the comparison of the results obtained using different docking protocols on the example of the search for bioactivity of compounds containing N-N-C(S)-N scaffold at the S-protein of SARS-CoV-2 virus with ACE2 human receptor interface. Based on over 1800 structures in the training set we have predicted binding properties of the complete set of nearly 600000 structures from the same class using the Machine Learning Random Forest Regressor approach. Public Library of Science 2021-09-09 /pmc/articles/PMC8428716/ /pubmed/34499662 http://dx.doi.org/10.1371/journal.pone.0256834 Text en © 2021 Rola et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Rola, Monika
Krassowski, Jakub
Górska, Julita
Grobelna, Anna
Płonka, Wojciech
Paneth, Agata
Paneth, Piotr
Machine Learning augmented docking studies of aminothioureas at the SARS-CoV-2—ACE2 interface
title Machine Learning augmented docking studies of aminothioureas at the SARS-CoV-2—ACE2 interface
title_full Machine Learning augmented docking studies of aminothioureas at the SARS-CoV-2—ACE2 interface
title_fullStr Machine Learning augmented docking studies of aminothioureas at the SARS-CoV-2—ACE2 interface
title_full_unstemmed Machine Learning augmented docking studies of aminothioureas at the SARS-CoV-2—ACE2 interface
title_short Machine Learning augmented docking studies of aminothioureas at the SARS-CoV-2—ACE2 interface
title_sort machine learning augmented docking studies of aminothioureas at the sars-cov-2—ace2 interface
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8428716/
https://www.ncbi.nlm.nih.gov/pubmed/34499662
http://dx.doi.org/10.1371/journal.pone.0256834
work_keys_str_mv AT rolamonika machinelearningaugmenteddockingstudiesofaminothioureasatthesarscov2ace2interface
AT krassowskijakub machinelearningaugmenteddockingstudiesofaminothioureasatthesarscov2ace2interface
AT gorskajulita machinelearningaugmenteddockingstudiesofaminothioureasatthesarscov2ace2interface
AT grobelnaanna machinelearningaugmenteddockingstudiesofaminothioureasatthesarscov2ace2interface
AT płonkawojciech machinelearningaugmenteddockingstudiesofaminothioureasatthesarscov2ace2interface
AT panethagata machinelearningaugmenteddockingstudiesofaminothioureasatthesarscov2ace2interface
AT panethpiotr machinelearningaugmenteddockingstudiesofaminothioureasatthesarscov2ace2interface