Cargando…
Machine Learning augmented docking studies of aminothioureas at the SARS-CoV-2—ACE2 interface
The current pandemic outbreak clearly indicated the urgent need for tools allowing fast predictions of bioactivity of a large number of compounds, either available or at least synthesizable. In the computational chemistry toolbox, several such tools are available, with the main ones being docking an...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8428716/ https://www.ncbi.nlm.nih.gov/pubmed/34499662 http://dx.doi.org/10.1371/journal.pone.0256834 |
_version_ | 1783750431987466240 |
---|---|
author | Rola, Monika Krassowski, Jakub Górska, Julita Grobelna, Anna Płonka, Wojciech Paneth, Agata Paneth, Piotr |
author_facet | Rola, Monika Krassowski, Jakub Górska, Julita Grobelna, Anna Płonka, Wojciech Paneth, Agata Paneth, Piotr |
author_sort | Rola, Monika |
collection | PubMed |
description | The current pandemic outbreak clearly indicated the urgent need for tools allowing fast predictions of bioactivity of a large number of compounds, either available or at least synthesizable. In the computational chemistry toolbox, several such tools are available, with the main ones being docking and structure-activity relationship modeling either by classical linear QSAR or Machine Learning techniques. In this contribution, we focus on the comparison of the results obtained using different docking protocols on the example of the search for bioactivity of compounds containing N-N-C(S)-N scaffold at the S-protein of SARS-CoV-2 virus with ACE2 human receptor interface. Based on over 1800 structures in the training set we have predicted binding properties of the complete set of nearly 600000 structures from the same class using the Machine Learning Random Forest Regressor approach. |
format | Online Article Text |
id | pubmed-8428716 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-84287162021-09-10 Machine Learning augmented docking studies of aminothioureas at the SARS-CoV-2—ACE2 interface Rola, Monika Krassowski, Jakub Górska, Julita Grobelna, Anna Płonka, Wojciech Paneth, Agata Paneth, Piotr PLoS One Research Article The current pandemic outbreak clearly indicated the urgent need for tools allowing fast predictions of bioactivity of a large number of compounds, either available or at least synthesizable. In the computational chemistry toolbox, several such tools are available, with the main ones being docking and structure-activity relationship modeling either by classical linear QSAR or Machine Learning techniques. In this contribution, we focus on the comparison of the results obtained using different docking protocols on the example of the search for bioactivity of compounds containing N-N-C(S)-N scaffold at the S-protein of SARS-CoV-2 virus with ACE2 human receptor interface. Based on over 1800 structures in the training set we have predicted binding properties of the complete set of nearly 600000 structures from the same class using the Machine Learning Random Forest Regressor approach. Public Library of Science 2021-09-09 /pmc/articles/PMC8428716/ /pubmed/34499662 http://dx.doi.org/10.1371/journal.pone.0256834 Text en © 2021 Rola et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Rola, Monika Krassowski, Jakub Górska, Julita Grobelna, Anna Płonka, Wojciech Paneth, Agata Paneth, Piotr Machine Learning augmented docking studies of aminothioureas at the SARS-CoV-2—ACE2 interface |
title | Machine Learning augmented docking studies of aminothioureas at the SARS-CoV-2—ACE2 interface |
title_full | Machine Learning augmented docking studies of aminothioureas at the SARS-CoV-2—ACE2 interface |
title_fullStr | Machine Learning augmented docking studies of aminothioureas at the SARS-CoV-2—ACE2 interface |
title_full_unstemmed | Machine Learning augmented docking studies of aminothioureas at the SARS-CoV-2—ACE2 interface |
title_short | Machine Learning augmented docking studies of aminothioureas at the SARS-CoV-2—ACE2 interface |
title_sort | machine learning augmented docking studies of aminothioureas at the sars-cov-2—ace2 interface |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8428716/ https://www.ncbi.nlm.nih.gov/pubmed/34499662 http://dx.doi.org/10.1371/journal.pone.0256834 |
work_keys_str_mv | AT rolamonika machinelearningaugmenteddockingstudiesofaminothioureasatthesarscov2ace2interface AT krassowskijakub machinelearningaugmenteddockingstudiesofaminothioureasatthesarscov2ace2interface AT gorskajulita machinelearningaugmenteddockingstudiesofaminothioureasatthesarscov2ace2interface AT grobelnaanna machinelearningaugmenteddockingstudiesofaminothioureasatthesarscov2ace2interface AT płonkawojciech machinelearningaugmenteddockingstudiesofaminothioureasatthesarscov2ace2interface AT panethagata machinelearningaugmenteddockingstudiesofaminothioureasatthesarscov2ace2interface AT panethpiotr machinelearningaugmenteddockingstudiesofaminothioureasatthesarscov2ace2interface |