Cargando…
Machine Learning augmented docking studies of aminothioureas at the SARS-CoV-2—ACE2 interface
The current pandemic outbreak clearly indicated the urgent need for tools allowing fast predictions of bioactivity of a large number of compounds, either available or at least synthesizable. In the computational chemistry toolbox, several such tools are available, with the main ones being docking an...
Autores principales: | Rola, Monika, Krassowski, Jakub, Górska, Julita, Grobelna, Anna, Płonka, Wojciech, Paneth, Agata, Paneth, Piotr |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8428716/ https://www.ncbi.nlm.nih.gov/pubmed/34499662 http://dx.doi.org/10.1371/journal.pone.0256834 |
Ejemplares similares
-
Docking and QSAR of Aminothioureas at the SARS-CoV-2 S-Protein–Human ACE2 Receptor Interface
por: Płonka, Wojciech, et al.
Publicado: (2020) -
What do docking and QSAR tell us about the design of HIV-1 reverse transcriptase nonnucleoside inhibitors?
por: Paneth, Agata, et al.
Publicado: (2017) -
Assessment of Nonnucleoside Inhibitors Binding to HIV-1 Reverse Transcriptase Using HYDE Scoring
por: Paneth, Agata, et al.
Publicado: (2019) -
Antibacterial Activity of Fluorobenzoylthiosemicarbazides and Their Cyclic Analogues with 1,2,4-Triazole Scaffold
por: Kosikowska, Urszula, et al.
Publicado: (2020) -
Isotopic Consequences of Host–Guest Interactions;
Noncovalent Chlorine Isotope Effects
por: Paneth, Agata, et al.
Publicado: (2021)