Cargando…

Results of the 2020 fastMRI Challenge for Machine Learning MR Image Reconstruction

Accelerating MRI scans is one of the principal outstanding problems in the MRI research community. Towards this goal, we hosted the second fastMRI competition targeted towards reconstructing MR images with subsampled k-space data. We provided participants with data from 7,299 clinical brain scans (d...

Descripción completa

Detalles Bibliográficos
Autores principales: Muckley, Matthew J., Riemenschneider, Bruno, Radmanesh, Alireza, Kim, Sunwoo, Jeong, Geunu, Ko, Jingyu, Jun, Yohan, Shin, Hyungseob, Hwang, Dosik, Mostapha, Mahmoud, Arberet, Simon, Nickel, Dominik, Ramzi, Zaccharie, Ciuciu, Philippe, Starck, Jean-Luc, Teuwen, Jonas, Karkalousos, Dimitrios, Zhang, Chaoping, Sriram, Anuroop, Huang, Zhengnan, Yakubova, Nafissa, Lui, Yvonne W., Knoll, Florian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8428775/
https://www.ncbi.nlm.nih.gov/pubmed/33929957
http://dx.doi.org/10.1109/TMI.2021.3075856
_version_ 1783750441272606720
author Muckley, Matthew J.
Riemenschneider, Bruno
Radmanesh, Alireza
Kim, Sunwoo
Jeong, Geunu
Ko, Jingyu
Jun, Yohan
Shin, Hyungseob
Hwang, Dosik
Mostapha, Mahmoud
Arberet, Simon
Nickel, Dominik
Ramzi, Zaccharie
Ciuciu, Philippe
Starck, Jean-Luc
Teuwen, Jonas
Karkalousos, Dimitrios
Zhang, Chaoping
Sriram, Anuroop
Huang, Zhengnan
Yakubova, Nafissa
Lui, Yvonne W.
Knoll, Florian
author_facet Muckley, Matthew J.
Riemenschneider, Bruno
Radmanesh, Alireza
Kim, Sunwoo
Jeong, Geunu
Ko, Jingyu
Jun, Yohan
Shin, Hyungseob
Hwang, Dosik
Mostapha, Mahmoud
Arberet, Simon
Nickel, Dominik
Ramzi, Zaccharie
Ciuciu, Philippe
Starck, Jean-Luc
Teuwen, Jonas
Karkalousos, Dimitrios
Zhang, Chaoping
Sriram, Anuroop
Huang, Zhengnan
Yakubova, Nafissa
Lui, Yvonne W.
Knoll, Florian
author_sort Muckley, Matthew J.
collection PubMed
description Accelerating MRI scans is one of the principal outstanding problems in the MRI research community. Towards this goal, we hosted the second fastMRI competition targeted towards reconstructing MR images with subsampled k-space data. We provided participants with data from 7,299 clinical brain scans (de-identified via a HIPAA-compliant procedure by NYU Langone Health), holding back the fully-sampled data from 894 of these scans for challenge evaluation purposes. In contrast to the 2019 challenge, we focused our radiologist evaluations on pathological assessment in brain images. We also debuted a new Transfer track that required participants to submit models evaluated on MRI scanners from outside the training set. We received 19 submissions from eight different groups. Results showed one team scoring best in both SSIM scores and qualitative radiologist evaluations. We also performed analysis on alternative metrics to mitigate the effects of background noise and collected feedback from the participants to inform future challenges. Lastly, we identify common failure modes across the submissions, highlighting areas of need for future research in the MRI reconstruction community.
format Online
Article
Text
id pubmed-8428775
institution National Center for Biotechnology Information
language English
publishDate 2021
record_format MEDLINE/PubMed
spelling pubmed-84287752021-09-09 Results of the 2020 fastMRI Challenge for Machine Learning MR Image Reconstruction Muckley, Matthew J. Riemenschneider, Bruno Radmanesh, Alireza Kim, Sunwoo Jeong, Geunu Ko, Jingyu Jun, Yohan Shin, Hyungseob Hwang, Dosik Mostapha, Mahmoud Arberet, Simon Nickel, Dominik Ramzi, Zaccharie Ciuciu, Philippe Starck, Jean-Luc Teuwen, Jonas Karkalousos, Dimitrios Zhang, Chaoping Sriram, Anuroop Huang, Zhengnan Yakubova, Nafissa Lui, Yvonne W. Knoll, Florian IEEE Trans Med Imaging Article Accelerating MRI scans is one of the principal outstanding problems in the MRI research community. Towards this goal, we hosted the second fastMRI competition targeted towards reconstructing MR images with subsampled k-space data. We provided participants with data from 7,299 clinical brain scans (de-identified via a HIPAA-compliant procedure by NYU Langone Health), holding back the fully-sampled data from 894 of these scans for challenge evaluation purposes. In contrast to the 2019 challenge, we focused our radiologist evaluations on pathological assessment in brain images. We also debuted a new Transfer track that required participants to submit models evaluated on MRI scanners from outside the training set. We received 19 submissions from eight different groups. Results showed one team scoring best in both SSIM scores and qualitative radiologist evaluations. We also performed analysis on alternative metrics to mitigate the effects of background noise and collected feedback from the participants to inform future challenges. Lastly, we identify common failure modes across the submissions, highlighting areas of need for future research in the MRI reconstruction community. 2021-08-31 2021-09 /pmc/articles/PMC8428775/ /pubmed/33929957 http://dx.doi.org/10.1109/TMI.2021.3075856 Text en https://creativecommons.org/licenses/by/4.0/This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Muckley, Matthew J.
Riemenschneider, Bruno
Radmanesh, Alireza
Kim, Sunwoo
Jeong, Geunu
Ko, Jingyu
Jun, Yohan
Shin, Hyungseob
Hwang, Dosik
Mostapha, Mahmoud
Arberet, Simon
Nickel, Dominik
Ramzi, Zaccharie
Ciuciu, Philippe
Starck, Jean-Luc
Teuwen, Jonas
Karkalousos, Dimitrios
Zhang, Chaoping
Sriram, Anuroop
Huang, Zhengnan
Yakubova, Nafissa
Lui, Yvonne W.
Knoll, Florian
Results of the 2020 fastMRI Challenge for Machine Learning MR Image Reconstruction
title Results of the 2020 fastMRI Challenge for Machine Learning MR Image Reconstruction
title_full Results of the 2020 fastMRI Challenge for Machine Learning MR Image Reconstruction
title_fullStr Results of the 2020 fastMRI Challenge for Machine Learning MR Image Reconstruction
title_full_unstemmed Results of the 2020 fastMRI Challenge for Machine Learning MR Image Reconstruction
title_short Results of the 2020 fastMRI Challenge for Machine Learning MR Image Reconstruction
title_sort results of the 2020 fastmri challenge for machine learning mr image reconstruction
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8428775/
https://www.ncbi.nlm.nih.gov/pubmed/33929957
http://dx.doi.org/10.1109/TMI.2021.3075856
work_keys_str_mv AT muckleymatthewj resultsofthe2020fastmrichallengeformachinelearningmrimagereconstruction
AT riemenschneiderbruno resultsofthe2020fastmrichallengeformachinelearningmrimagereconstruction
AT radmaneshalireza resultsofthe2020fastmrichallengeformachinelearningmrimagereconstruction
AT kimsunwoo resultsofthe2020fastmrichallengeformachinelearningmrimagereconstruction
AT jeonggeunu resultsofthe2020fastmrichallengeformachinelearningmrimagereconstruction
AT kojingyu resultsofthe2020fastmrichallengeformachinelearningmrimagereconstruction
AT junyohan resultsofthe2020fastmrichallengeformachinelearningmrimagereconstruction
AT shinhyungseob resultsofthe2020fastmrichallengeformachinelearningmrimagereconstruction
AT hwangdosik resultsofthe2020fastmrichallengeformachinelearningmrimagereconstruction
AT mostaphamahmoud resultsofthe2020fastmrichallengeformachinelearningmrimagereconstruction
AT arberetsimon resultsofthe2020fastmrichallengeformachinelearningmrimagereconstruction
AT nickeldominik resultsofthe2020fastmrichallengeformachinelearningmrimagereconstruction
AT ramzizaccharie resultsofthe2020fastmrichallengeformachinelearningmrimagereconstruction
AT ciuciuphilippe resultsofthe2020fastmrichallengeformachinelearningmrimagereconstruction
AT starckjeanluc resultsofthe2020fastmrichallengeformachinelearningmrimagereconstruction
AT teuwenjonas resultsofthe2020fastmrichallengeformachinelearningmrimagereconstruction
AT karkalousosdimitrios resultsofthe2020fastmrichallengeformachinelearningmrimagereconstruction
AT zhangchaoping resultsofthe2020fastmrichallengeformachinelearningmrimagereconstruction
AT sriramanuroop resultsofthe2020fastmrichallengeformachinelearningmrimagereconstruction
AT huangzhengnan resultsofthe2020fastmrichallengeformachinelearningmrimagereconstruction
AT yakubovanafissa resultsofthe2020fastmrichallengeformachinelearningmrimagereconstruction
AT luiyvonnew resultsofthe2020fastmrichallengeformachinelearningmrimagereconstruction
AT knollflorian resultsofthe2020fastmrichallengeformachinelearningmrimagereconstruction