Cargando…
The model-specific Markov embedding problem for symmetric group-based models
We study model embeddability, which is a variation of the famous embedding problem in probability theory, when apart from the requirement that the Markov matrix is the matrix exponential of a rate matrix, we additionally ask that the rate matrix follows the model structure. We provide a characterisa...
Autores principales: | Ardiyansyah, Muhammad, Kosta, Dimitra, Kubjas, Kaie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8429190/ https://www.ncbi.nlm.nih.gov/pubmed/34499233 http://dx.doi.org/10.1007/s00285-021-01656-5 |
Ejemplares similares
-
Maximum Likelihood Estimation of Symmetric Group-Based Models via Numerical Algebraic Geometry
por: Kosta, Dimitra, et al.
Publicado: (2018) -
The Embedding Problem for Markov Models of Nucleotide Substitution
por: Verbyla, Klara L., et al.
Publicado: (2013) -
Embeddability of centrosymmetric matrices capturing the double-helix structure in natural and synthetic DNA
por: Ardiyansyah, Muhammad, et al.
Publicado: (2023) -
Symmetric Markov processes
por: Silverstein, Martin L
Publicado: (1974) -
Boundary theory for symmetric Markov processes
por: Silverstein, Martin L
Publicado: (1976)