Cargando…
Advancing agricultural research using machine learning algorithms
Rising global population and climate change realities dictate that agricultural productivity must be accelerated. Results from current traditional research approaches are difficult to extrapolate to all possible fields because they are dependent on specific soil types, weather conditions, and backgr...
Autores principales: | Mourtzinis, Spyridon, Esker, Paul D., Specht, James E., Conley, Shawn P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8429560/ https://www.ncbi.nlm.nih.gov/pubmed/34504206 http://dx.doi.org/10.1038/s41598-021-97380-7 |
Ejemplares similares
-
A machine learning interpretation of the contribution of foliar fungicides to soybean yield in the north‐central United States
por: Shah, Denis A., et al.
Publicado: (2021) -
Defining Optimal Soybean Sowing Dates across the US
por: Mourtzinis, Spyridon, et al.
Publicado: (2019) -
Modeling the relationship between estimated fungicide use and disease-associated yield losses of soybean in the United States II: Seed-applied fungicides vs seedling diseases
por: Bandara, Ananda Y., et al.
Publicado: (2020) -
The development of a machine learning algorithm to identify occupational injuries in agriculture using pre-hospital care reports
por: Scott, Erika, et al.
Publicado: (2021) -
Modeling the relationship between estimated fungicide use and disease-associated yield losses of soybean in the United States I: Foliar fungicides vs foliar diseases
por: Bandara, Ananda Y., et al.
Publicado: (2020)