Cargando…
Automated detection of poor-quality data: case studies in healthcare
The detection and removal of poor-quality data in a training set is crucial to achieve high-performing AI models. In healthcare, data can be inherently poor-quality due to uncertainty or subjectivity, but as is often the case, the requirement for data privacy restricts AI practitioners from accessin...
Autores principales: | Dakka, M. A., Nguyen, T. V., Hall, J. M. M., Diakiw, S. M., VerMilyea, M., Linke, R., Perugini, M., Perugini, D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8429593/ https://www.ncbi.nlm.nih.gov/pubmed/34504205 http://dx.doi.org/10.1038/s41598-021-97341-0 |
Ejemplares similares
-
A novel decentralized federated learning approach to train on globally distributed, poor quality, and protected private medical data
por: Nguyen, T. V., et al.
Publicado: (2022) -
Efficient automated error detection in medical data using deep-learning and label-clustering
por: Nguyen, T. V., et al.
Publicado: (2023) -
Development of an artificial intelligence-based assessment model for prediction of embryo viability using static images captured by optical light microscopy during IVF
por: VerMilyea, M, et al.
Publicado: (2020) -
Development of an artificial intelligence model for predicting the likelihood of human embryo euploidy based on blastocyst images from multiple imaging systems during IVF
por: Diakiw, S M, et al.
Publicado: (2022) -
Transcription-Independent Heritability of Induced Histone Modifications in the Mouse Preimplantation Embryo
por: VerMilyea, Matthew D., et al.
Publicado: (2009)