Cargando…
Utilizing machine learning to improve clinical trial design for acute respiratory distress syndrome
Heterogeneous patient populations, complex pharmacology and low recruitment rates in the Intensive Care Unit (ICU) have led to the failure of many clinical trials. Recently, machine learning (ML) emerged as a new technology to process and identify big data relationships, enabling a new era in clinic...
Autores principales: | Schwager, E., Jansson, K., Rahman, A., Schiffer, S., Chang, Y., Boverman, G., Gross, B., Xu-Wilson, M., Boehme, P., Truebel, H., Frassica, J. J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8429640/ https://www.ncbi.nlm.nih.gov/pubmed/34504281 http://dx.doi.org/10.1038/s41746-021-00505-5 |
Ejemplares similares
-
Early prediction of hemodynamic interventions in the intensive care unit using machine learning
por: Rahman, Asif, et al.
Publicado: (2021) -
Machine learning for patient risk stratification for acute respiratory distress syndrome
por: Zeiberg, Daniel, et al.
Publicado: (2019) -
Digital Competencies and Attitudes Toward Digital Adherence Solutions Among Elderly Patients Treated With Novel Anticoagulants: Qualitative Study
por: Herrmann, Maximilian, et al.
Publicado: (2020) -
Machine Learning Methods to Predict Acute Respiratory Failure and Acute Respiratory Distress Syndrome
por: Wong, An-Kwok Ian, et al.
Publicado: (2020) -
Can Big Data and Machine Learning Improve Our Understanding of Acute Respiratory Distress Syndrome?
por: Bhattarai, Sanket, et al.
Publicado: (2021)