Cargando…
Automated machine learning for endemic active tuberculosis prediction from multiplex serological data
Serological diagnosis of active tuberculosis (TB) is enhanced by detection of multiple antibodies due to variable immune responses among patients. Clinical interpretation of these complex datasets requires development of suitable algorithms, a time consuming and tedious undertaking addressed by the...
Autores principales: | Rashidi, Hooman H., Dang, Luke T., Albahra, Samer, Ravindran, Resmi, Khan, Imran H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8429671/ https://www.ncbi.nlm.nih.gov/pubmed/34504228 http://dx.doi.org/10.1038/s41598-021-97453-7 |
Ejemplares similares
-
Prediction of tuberculosis using an automated machine learning platform for models trained on synthetic data
por: Rashidi, Hooman H., et al.
Publicado: (2022) -
Common statistical concepts in the supervised Machine Learning arena
por: Rashidi, Hooman H., et al.
Publicado: (2023) -
Novel application of an automated-machine learning development tool for predicting burn sepsis: proof of concept
por: Tran, Nam K., et al.
Publicado: (2020) -
Comparative performance of two automated machine learning platforms for COVID-19 detection by MALDI-TOF-MS
por: Rashidi, Hooman H., et al.
Publicado: (2022) -
Innovations in infectious disease testing: Leveraging COVID-19 pandemic technologies for the future
por: Tran, Nam K., et al.
Publicado: (2023)