Cargando…
From decimeter-scale elevated ionic conductivity regions in the cloud to lightning initiation
In this work, we represent the lightning initiation scenario as a sequence of two transitions of discharge activity to progressively larger spatial scales: the first one is from small-scale avalanches to intermediate-scale streamers; and the second one is from streamers to the lightning seed. We pos...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8429699/ https://www.ncbi.nlm.nih.gov/pubmed/34504164 http://dx.doi.org/10.1038/s41598-021-97321-4 |
_version_ | 1783750584458805248 |
---|---|
author | Iudin, D. I. Rakov, V. A. Syssoev, A. A. Bulatov, A. A. Hayakawa, M. |
author_facet | Iudin, D. I. Rakov, V. A. Syssoev, A. A. Bulatov, A. A. Hayakawa, M. |
author_sort | Iudin, D. I. |
collection | PubMed |
description | In this work, we represent the lightning initiation scenario as a sequence of two transitions of discharge activity to progressively larger spatial scales: the first one is from small-scale avalanches to intermediate-scale streamers; and the second one is from streamers to the lightning seed. We postulate the existence of ion production centers in the cloud, whose occurrence is caused by electric field bursts accompanying hydrometeor collisions (or near collisions) in the turbulent thundercloud environment. When a new ion production center is created inside (fully or partially) the residual ion spot left behind by a previously established center, there is a cumulative effect in the increasing of ion concentration. As a result, the essentially non-conducting thundercloud becomes seeded by elevated ion-conductivity regions (EICRs) with spatial extent of 0.1–1 m and a lifetime of 1–10 s. The electric field on the surface of an EICR (due to its conductivity being at least 4 orders of magnitude higher than ambient) is a factor of 3 or more higher than ambient. For a maximum ambient electric field of 100 kV/m typically measured in thunderclouds, such field enhancement is sufficient for initiation of positive streamers and their propagation over distances of the order of decimeters, and this will be happening naturally, without any external agents (e.g., superenergetic cosmic ray particles) or extraordinary in-cloud conditions, such as very high potential differences or very large hydrometeors. Provided that each EICR generates at least one streamer during its lifetime, the streamers will form a 3D network, some parts of which will contain hot channel segments created via the cumulative heating and/or thermal-ionizational instability. These hot channel segments will polarize, interact with each other, and cluster, forming longer conducting structures in the cloud. When the ambient potential difference bridged by such a conducting structure exceeds 3 MV, we assume that the lightning seed, capable of self-sustained bidirectional extension, is formed. |
format | Online Article Text |
id | pubmed-8429699 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-84296992021-09-13 From decimeter-scale elevated ionic conductivity regions in the cloud to lightning initiation Iudin, D. I. Rakov, V. A. Syssoev, A. A. Bulatov, A. A. Hayakawa, M. Sci Rep Article In this work, we represent the lightning initiation scenario as a sequence of two transitions of discharge activity to progressively larger spatial scales: the first one is from small-scale avalanches to intermediate-scale streamers; and the second one is from streamers to the lightning seed. We postulate the existence of ion production centers in the cloud, whose occurrence is caused by electric field bursts accompanying hydrometeor collisions (or near collisions) in the turbulent thundercloud environment. When a new ion production center is created inside (fully or partially) the residual ion spot left behind by a previously established center, there is a cumulative effect in the increasing of ion concentration. As a result, the essentially non-conducting thundercloud becomes seeded by elevated ion-conductivity regions (EICRs) with spatial extent of 0.1–1 m and a lifetime of 1–10 s. The electric field on the surface of an EICR (due to its conductivity being at least 4 orders of magnitude higher than ambient) is a factor of 3 or more higher than ambient. For a maximum ambient electric field of 100 kV/m typically measured in thunderclouds, such field enhancement is sufficient for initiation of positive streamers and their propagation over distances of the order of decimeters, and this will be happening naturally, without any external agents (e.g., superenergetic cosmic ray particles) or extraordinary in-cloud conditions, such as very high potential differences or very large hydrometeors. Provided that each EICR generates at least one streamer during its lifetime, the streamers will form a 3D network, some parts of which will contain hot channel segments created via the cumulative heating and/or thermal-ionizational instability. These hot channel segments will polarize, interact with each other, and cluster, forming longer conducting structures in the cloud. When the ambient potential difference bridged by such a conducting structure exceeds 3 MV, we assume that the lightning seed, capable of self-sustained bidirectional extension, is formed. Nature Publishing Group UK 2021-09-09 /pmc/articles/PMC8429699/ /pubmed/34504164 http://dx.doi.org/10.1038/s41598-021-97321-4 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Iudin, D. I. Rakov, V. A. Syssoev, A. A. Bulatov, A. A. Hayakawa, M. From decimeter-scale elevated ionic conductivity regions in the cloud to lightning initiation |
title | From decimeter-scale elevated ionic conductivity regions in the cloud to lightning initiation |
title_full | From decimeter-scale elevated ionic conductivity regions in the cloud to lightning initiation |
title_fullStr | From decimeter-scale elevated ionic conductivity regions in the cloud to lightning initiation |
title_full_unstemmed | From decimeter-scale elevated ionic conductivity regions in the cloud to lightning initiation |
title_short | From decimeter-scale elevated ionic conductivity regions in the cloud to lightning initiation |
title_sort | from decimeter-scale elevated ionic conductivity regions in the cloud to lightning initiation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8429699/ https://www.ncbi.nlm.nih.gov/pubmed/34504164 http://dx.doi.org/10.1038/s41598-021-97321-4 |
work_keys_str_mv | AT iudindi fromdecimeterscaleelevatedionicconductivityregionsinthecloudtolightninginitiation AT rakovva fromdecimeterscaleelevatedionicconductivityregionsinthecloudtolightninginitiation AT syssoevaa fromdecimeterscaleelevatedionicconductivityregionsinthecloudtolightninginitiation AT bulatovaa fromdecimeterscaleelevatedionicconductivityregionsinthecloudtolightninginitiation AT hayakawam fromdecimeterscaleelevatedionicconductivityregionsinthecloudtolightninginitiation |