Cargando…
One-transistor static random-access memory cell array comprising single-gated feedback field-effect transistors
In this study, we fabricated a 2 × 2 one-transistor static random-access memory (1T-SRAM) cell array comprising single-gated feedback field-effect transistors and examined their operation and memory characteristics. The individual 1T-SRAM cell had a retention time of over 900 s, nondestructive readi...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8429708/ https://www.ncbi.nlm.nih.gov/pubmed/34504236 http://dx.doi.org/10.1038/s41598-021-97479-x |
Sumario: | In this study, we fabricated a 2 × 2 one-transistor static random-access memory (1T-SRAM) cell array comprising single-gated feedback field-effect transistors and examined their operation and memory characteristics. The individual 1T-SRAM cell had a retention time of over 900 s, nondestructive reading characteristics of 10,000 s, and an endurance of 10(8) cycles. The standby power of the individual 1T-SRAM cell was estimated to be 0.7 pW for holding the “0” state and 6 nW for holding the “1” state. For a selected cell in the 2 × 2 1T-SRAM cell array, nondestructive reading of the memory was conducted without any disturbance in the half-selected cells. This immunity to disturbances validated the reliability of the 1T-SRAM cell array. |
---|