Cargando…
Inverse design of glass structure with deep graph neural networks
Directly manipulating the atomic structure to achieve a specific property is a long pursuit in the field of materials. However, hindered by the disordered, non-prototypical glass structure and the complex interplay between structure and property, such inverse design is dauntingly hard for glasses. H...
Autores principales: | Wang, Qi, Zhang, Longfei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8429760/ https://www.ncbi.nlm.nih.gov/pubmed/34504073 http://dx.doi.org/10.1038/s41467-021-25490-x |
Ejemplares similares
-
Prediction and Inverse Design of Structural Colors of Nanoparticle Systems via Deep Neural Network
por: Ma, Lanxin, et al.
Publicado: (2021) -
Deep Neural Network Inverse Design of Integrated Photonic Power Splitters
por: Tahersima, Mohammad H., et al.
Publicado: (2019) -
A deep graph convolutional neural network architecture for graph classification
por: Zhou, Yuchen, et al.
Publicado: (2023) -
Generative Deep Neural Networks for Inverse Materials Design Using Backpropagation and Active Learning
por: Chen, Chun‐Teh, et al.
Publicado: (2020) -
Parallel tempered genetic algorithm guided by deep neural networks for inverse molecular design
por: Nigam, AkshatKumar, et al.
Publicado: (2022)