Cargando…
Deep Feature Extraction for Resting-State Functional MRI by Self-Supervised Learning and Application to Schizophrenia Diagnosis
In this study, we propose a deep-learning technique for functional MRI analysis. We introduced a novel self-supervised learning scheme that is particularly useful for functional MRI wherein the subject identity is used as the teacher signal of a neural network. The neural network is trained solely b...
Autores principales: | Hashimoto, Yuki, Ogata, Yousuke, Honda, Manabu, Yamashita, Yuichi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8429808/ https://www.ncbi.nlm.nih.gov/pubmed/34512240 http://dx.doi.org/10.3389/fnins.2021.696853 |
Ejemplares similares
-
Three-Dimensional Convolutional Autoencoder Extracts Features of Structural Brain Images With a “Diagnostic Label-Free” Approach: Application to Schizophrenia Datasets
por: Yamaguchi, Hiroyuki, et al.
Publicado: (2021) -
Selfee, self-supervised features extraction of animal behaviors
por: Jia, Yinjun, et al.
Publicado: (2022) -
Feature and decision-level fusion for schizophrenia detection based on resting-state fMRI data
por: Algumaei, Ali H., et al.
Publicado: (2022) -
Resting-state functional MRI in treatment-resistant schizophrenia
por: Tuovinen, Noora, et al.
Publicado: (2023) -
Self-supervised deep learning encodes high-resolution features of protein subcellular localization
por: Kobayashi, Hirofumi, et al.
Publicado: (2022)