Cargando…

SCDRHA: A scRNA-Seq Data Dimensionality Reduction Algorithm Based on Hierarchical Autoencoder

Dimensionality reduction of high-dimensional data is crucial for single-cell RNA sequencing (scRNA-seq) visualization and clustering. One prominent challenge in scRNA-seq studies comes from the dropout events, which lead to zero-inflated data. To address this issue, in this paper, we propose a scRNA...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Jianping, Wang, Na, Wang, Haiyun, Zheng, Chunhou, Su, Yansen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8429846/
https://www.ncbi.nlm.nih.gov/pubmed/34512734
http://dx.doi.org/10.3389/fgene.2021.733906

Ejemplares similares