Cargando…
SCDRHA: A scRNA-Seq Data Dimensionality Reduction Algorithm Based on Hierarchical Autoencoder
Dimensionality reduction of high-dimensional data is crucial for single-cell RNA sequencing (scRNA-seq) visualization and clustering. One prominent challenge in scRNA-seq studies comes from the dropout events, which lead to zero-inflated data. To address this issue, in this paper, we propose a scRNA...
Autores principales: | Zhao, Jianping, Wang, Na, Wang, Haiyun, Zheng, Chunhou, Su, Yansen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8429846/ https://www.ncbi.nlm.nih.gov/pubmed/34512734 http://dx.doi.org/10.3389/fgene.2021.733906 |
Ejemplares similares
-
scDSSC: Deep Sparse Subspace Clustering for scRNA-seq Data
por: Wang, HaiYun, et al.
Publicado: (2022) -
NeuralEE: A GPU-Accelerated Elastic Embedding Dimensionality Reduction Method for Visualizing Large-Scale scRNA-Seq Data
por: Xiong, Jiankang, et al.
Publicado: (2020) -
D3K: The Dissimilarity-Density-Dynamic Radius K-means Clustering Algorithm for scRNA-Seq Data
por: Liu, Guoyun, et al.
Publicado: (2022) -
Digitaldlsorter: Deep-Learning on scRNA-Seq to Deconvolute Gene Expression Data
por: Torroja, Carlos, et al.
Publicado: (2019) -
Visualizing hierarchies in scRNA-seq data using a density tree-biased autoencoder
por: Garrido, Quentin, et al.
Publicado: (2022)