Cargando…
A Diagnostic Method for Gastric Cancer Using Two-Photon Microscopy With Enzyme-Selective Fluorescent Probes: A Pilot Study
BACKGROUND: Endoscopy is the most important tool for gastric cancer diagnosis. However, it relies on naked-eye evaluation by endoscopists, and the histopathologic confirmation is time-consuming. We aimed to visualize and measure the activity of various enzymes through two-photon microscopy (TPM) usi...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8429903/ https://www.ncbi.nlm.nih.gov/pubmed/34513658 http://dx.doi.org/10.3389/fonc.2021.634219 |
_version_ | 1783750632764604416 |
---|---|
author | Noh, Choong-Kyun Lim, Chang Su Lee, Gil Ho Cho, Myung Ki Lee, Hyo Won Roh, Jin Kim, Young Bae Lee, Eunyoung Park, Bumhee Kim, Hwan Myung Shin, Sung Jae |
author_facet | Noh, Choong-Kyun Lim, Chang Su Lee, Gil Ho Cho, Myung Ki Lee, Hyo Won Roh, Jin Kim, Young Bae Lee, Eunyoung Park, Bumhee Kim, Hwan Myung Shin, Sung Jae |
author_sort | Noh, Choong-Kyun |
collection | PubMed |
description | BACKGROUND: Endoscopy is the most important tool for gastric cancer diagnosis. However, it relies on naked-eye evaluation by endoscopists, and the histopathologic confirmation is time-consuming. We aimed to visualize and measure the activity of various enzymes through two-photon microscopy (TPM) using fluorescent probes and assess its diagnostic potential in gastric cancer. METHODS: β-Galactosidase (β-gal), carboxylesterase (CES), and human NAD(P)H: quinone oxidoreductase (hNQO1) enzyme activities in the normal mucosa, ulcer, adenoma, and gastric cancer biopsy samples were measured using two-photon enzyme probes. The fluorescence emission ratio at long and short wavelengths (Ch2/Ch1) for each probe was comparatively analyzed. Approximately 8,000 – 9,000 sectional images in each group were obtained by measuring the Ch2/Ch1 ratio according to the tissue depth. Each probe was cross-validated by measuring enzymatic activity from a solution containing lysed tissue. RESULTS: Total of 76 subjects were enrolled in this pilot study (normal 21, ulcer 18, adenoma 17, and cancer 20 patients, respectively). There were significant differences in the mean ratio values of β-gal (0.656 ± 0.142 vs. 1.127 ± 0.109, P < 0.001) and CES (0.876 ± 0.049 vs. 0.579 ± 0.089, P < 0.001) between the normal and cancer, respectively. The mean ratio value of cancer tissues was different compared to ulcer and adenoma (P < 0.001). The hNQO1 activity showed no significant difference between cancer and other conditions. Normal mucosa and cancer were visually and quantitatively distinguished through β-gal and CES analyses using TPM images, and enzymatic activity according to depth, was determined using sectional TPM ratiometric images. The results obtained from lysis buffer-treated tissue were consistent with TPM results. CONCLUSIONS: TPM imaging using ratiometric fluorescent probes enabled the discrimination of gastric cancer from normal, ulcer, and adenoma. This novel method can help in a visual differentiation and provide quantitative depth profiling in gastric cancer diagnosis. |
format | Online Article Text |
id | pubmed-8429903 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-84299032021-09-11 A Diagnostic Method for Gastric Cancer Using Two-Photon Microscopy With Enzyme-Selective Fluorescent Probes: A Pilot Study Noh, Choong-Kyun Lim, Chang Su Lee, Gil Ho Cho, Myung Ki Lee, Hyo Won Roh, Jin Kim, Young Bae Lee, Eunyoung Park, Bumhee Kim, Hwan Myung Shin, Sung Jae Front Oncol Oncology BACKGROUND: Endoscopy is the most important tool for gastric cancer diagnosis. However, it relies on naked-eye evaluation by endoscopists, and the histopathologic confirmation is time-consuming. We aimed to visualize and measure the activity of various enzymes through two-photon microscopy (TPM) using fluorescent probes and assess its diagnostic potential in gastric cancer. METHODS: β-Galactosidase (β-gal), carboxylesterase (CES), and human NAD(P)H: quinone oxidoreductase (hNQO1) enzyme activities in the normal mucosa, ulcer, adenoma, and gastric cancer biopsy samples were measured using two-photon enzyme probes. The fluorescence emission ratio at long and short wavelengths (Ch2/Ch1) for each probe was comparatively analyzed. Approximately 8,000 – 9,000 sectional images in each group were obtained by measuring the Ch2/Ch1 ratio according to the tissue depth. Each probe was cross-validated by measuring enzymatic activity from a solution containing lysed tissue. RESULTS: Total of 76 subjects were enrolled in this pilot study (normal 21, ulcer 18, adenoma 17, and cancer 20 patients, respectively). There were significant differences in the mean ratio values of β-gal (0.656 ± 0.142 vs. 1.127 ± 0.109, P < 0.001) and CES (0.876 ± 0.049 vs. 0.579 ± 0.089, P < 0.001) between the normal and cancer, respectively. The mean ratio value of cancer tissues was different compared to ulcer and adenoma (P < 0.001). The hNQO1 activity showed no significant difference between cancer and other conditions. Normal mucosa and cancer were visually and quantitatively distinguished through β-gal and CES analyses using TPM images, and enzymatic activity according to depth, was determined using sectional TPM ratiometric images. The results obtained from lysis buffer-treated tissue were consistent with TPM results. CONCLUSIONS: TPM imaging using ratiometric fluorescent probes enabled the discrimination of gastric cancer from normal, ulcer, and adenoma. This novel method can help in a visual differentiation and provide quantitative depth profiling in gastric cancer diagnosis. Frontiers Media S.A. 2021-08-27 /pmc/articles/PMC8429903/ /pubmed/34513658 http://dx.doi.org/10.3389/fonc.2021.634219 Text en Copyright © 2021 Noh, Lim, Lee, Cho, Lee, Roh, Kim, Lee, Park, Kim and Shin https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Oncology Noh, Choong-Kyun Lim, Chang Su Lee, Gil Ho Cho, Myung Ki Lee, Hyo Won Roh, Jin Kim, Young Bae Lee, Eunyoung Park, Bumhee Kim, Hwan Myung Shin, Sung Jae A Diagnostic Method for Gastric Cancer Using Two-Photon Microscopy With Enzyme-Selective Fluorescent Probes: A Pilot Study |
title | A Diagnostic Method for Gastric Cancer Using Two-Photon Microscopy With Enzyme-Selective Fluorescent Probes: A Pilot Study |
title_full | A Diagnostic Method for Gastric Cancer Using Two-Photon Microscopy With Enzyme-Selective Fluorescent Probes: A Pilot Study |
title_fullStr | A Diagnostic Method for Gastric Cancer Using Two-Photon Microscopy With Enzyme-Selective Fluorescent Probes: A Pilot Study |
title_full_unstemmed | A Diagnostic Method for Gastric Cancer Using Two-Photon Microscopy With Enzyme-Selective Fluorescent Probes: A Pilot Study |
title_short | A Diagnostic Method for Gastric Cancer Using Two-Photon Microscopy With Enzyme-Selective Fluorescent Probes: A Pilot Study |
title_sort | diagnostic method for gastric cancer using two-photon microscopy with enzyme-selective fluorescent probes: a pilot study |
topic | Oncology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8429903/ https://www.ncbi.nlm.nih.gov/pubmed/34513658 http://dx.doi.org/10.3389/fonc.2021.634219 |
work_keys_str_mv | AT nohchoongkyun adiagnosticmethodforgastriccancerusingtwophotonmicroscopywithenzymeselectivefluorescentprobesapilotstudy AT limchangsu adiagnosticmethodforgastriccancerusingtwophotonmicroscopywithenzymeselectivefluorescentprobesapilotstudy AT leegilho adiagnosticmethodforgastriccancerusingtwophotonmicroscopywithenzymeselectivefluorescentprobesapilotstudy AT chomyungki adiagnosticmethodforgastriccancerusingtwophotonmicroscopywithenzymeselectivefluorescentprobesapilotstudy AT leehyowon adiagnosticmethodforgastriccancerusingtwophotonmicroscopywithenzymeselectivefluorescentprobesapilotstudy AT rohjin adiagnosticmethodforgastriccancerusingtwophotonmicroscopywithenzymeselectivefluorescentprobesapilotstudy AT kimyoungbae adiagnosticmethodforgastriccancerusingtwophotonmicroscopywithenzymeselectivefluorescentprobesapilotstudy AT leeeunyoung adiagnosticmethodforgastriccancerusingtwophotonmicroscopywithenzymeselectivefluorescentprobesapilotstudy AT parkbumhee adiagnosticmethodforgastriccancerusingtwophotonmicroscopywithenzymeselectivefluorescentprobesapilotstudy AT kimhwanmyung adiagnosticmethodforgastriccancerusingtwophotonmicroscopywithenzymeselectivefluorescentprobesapilotstudy AT shinsungjae adiagnosticmethodforgastriccancerusingtwophotonmicroscopywithenzymeselectivefluorescentprobesapilotstudy AT nohchoongkyun diagnosticmethodforgastriccancerusingtwophotonmicroscopywithenzymeselectivefluorescentprobesapilotstudy AT limchangsu diagnosticmethodforgastriccancerusingtwophotonmicroscopywithenzymeselectivefluorescentprobesapilotstudy AT leegilho diagnosticmethodforgastriccancerusingtwophotonmicroscopywithenzymeselectivefluorescentprobesapilotstudy AT chomyungki diagnosticmethodforgastriccancerusingtwophotonmicroscopywithenzymeselectivefluorescentprobesapilotstudy AT leehyowon diagnosticmethodforgastriccancerusingtwophotonmicroscopywithenzymeselectivefluorescentprobesapilotstudy AT rohjin diagnosticmethodforgastriccancerusingtwophotonmicroscopywithenzymeselectivefluorescentprobesapilotstudy AT kimyoungbae diagnosticmethodforgastriccancerusingtwophotonmicroscopywithenzymeselectivefluorescentprobesapilotstudy AT leeeunyoung diagnosticmethodforgastriccancerusingtwophotonmicroscopywithenzymeselectivefluorescentprobesapilotstudy AT parkbumhee diagnosticmethodforgastriccancerusingtwophotonmicroscopywithenzymeselectivefluorescentprobesapilotstudy AT kimhwanmyung diagnosticmethodforgastriccancerusingtwophotonmicroscopywithenzymeselectivefluorescentprobesapilotstudy AT shinsungjae diagnosticmethodforgastriccancerusingtwophotonmicroscopywithenzymeselectivefluorescentprobesapilotstudy |