Cargando…

Improving the Rice Photosynthetic Efficiency and Yield by Editing OsHXK1 via CRISPR/Cas9 System

Rice (Oryza sativa L.) is an important food crop species in China. Cultivating high-yielding rice varieties that have a high photosynthetic efficiency is an important goal of rice breeding in China. In recent years, due to the continual innovation of molecular breeding methods, many excellent genes...

Descripción completa

Detalles Bibliográficos
Autores principales: Zheng, Shaoyan, Ye, Chanjuan, Lu, Jingqin, Liufu, Jiamin, Lin, Lin, Dong, Zequn, Li, Jing, Zhuang, Chuxiong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8430575/
https://www.ncbi.nlm.nih.gov/pubmed/34502462
http://dx.doi.org/10.3390/ijms22179554
Descripción
Sumario:Rice (Oryza sativa L.) is an important food crop species in China. Cultivating high-yielding rice varieties that have a high photosynthetic efficiency is an important goal of rice breeding in China. In recent years, due to the continual innovation of molecular breeding methods, many excellent genes have been applied in rice breeding, which is highly important for increasing rice yields. In this paper, the hexokinase gene OsHXK1 was knocked out via the CRISPR/Cas9 gene-editing method in the indica rice varieties Huanghuazhan, Meixiangzhan, and Wushansimiao, and OsHXK1-CRISPR/Cas9 lines were obtained. According to the results of a phenotypic analysis and agronomic trait statistics, the OsHXK1-CRISPR/Cas9 plants presented increased light saturation points, stomatal conductance, light tolerance, photosynthetic products, and rice yields. Moreover, transcriptome analysis showed that the expression of photosynthesis-related genes significantly increased. Taken together, our results revealed that knocking out OsHXK1 via the CRISPR/Cas9 gene-editing method could effectively lead to the cultivation of high-photosynthetic efficiency and high-yielding rice varieties. They also revealed the important roles of OsHXK1 in the regulation of rice yield and photosynthesis.