Cargando…
Improving the Rice Photosynthetic Efficiency and Yield by Editing OsHXK1 via CRISPR/Cas9 System
Rice (Oryza sativa L.) is an important food crop species in China. Cultivating high-yielding rice varieties that have a high photosynthetic efficiency is an important goal of rice breeding in China. In recent years, due to the continual innovation of molecular breeding methods, many excellent genes...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8430575/ https://www.ncbi.nlm.nih.gov/pubmed/34502462 http://dx.doi.org/10.3390/ijms22179554 |
_version_ | 1783750735495692288 |
---|---|
author | Zheng, Shaoyan Ye, Chanjuan Lu, Jingqin Liufu, Jiamin Lin, Lin Dong, Zequn Li, Jing Zhuang, Chuxiong |
author_facet | Zheng, Shaoyan Ye, Chanjuan Lu, Jingqin Liufu, Jiamin Lin, Lin Dong, Zequn Li, Jing Zhuang, Chuxiong |
author_sort | Zheng, Shaoyan |
collection | PubMed |
description | Rice (Oryza sativa L.) is an important food crop species in China. Cultivating high-yielding rice varieties that have a high photosynthetic efficiency is an important goal of rice breeding in China. In recent years, due to the continual innovation of molecular breeding methods, many excellent genes have been applied in rice breeding, which is highly important for increasing rice yields. In this paper, the hexokinase gene OsHXK1 was knocked out via the CRISPR/Cas9 gene-editing method in the indica rice varieties Huanghuazhan, Meixiangzhan, and Wushansimiao, and OsHXK1-CRISPR/Cas9 lines were obtained. According to the results of a phenotypic analysis and agronomic trait statistics, the OsHXK1-CRISPR/Cas9 plants presented increased light saturation points, stomatal conductance, light tolerance, photosynthetic products, and rice yields. Moreover, transcriptome analysis showed that the expression of photosynthesis-related genes significantly increased. Taken together, our results revealed that knocking out OsHXK1 via the CRISPR/Cas9 gene-editing method could effectively lead to the cultivation of high-photosynthetic efficiency and high-yielding rice varieties. They also revealed the important roles of OsHXK1 in the regulation of rice yield and photosynthesis. |
format | Online Article Text |
id | pubmed-8430575 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-84305752021-09-11 Improving the Rice Photosynthetic Efficiency and Yield by Editing OsHXK1 via CRISPR/Cas9 System Zheng, Shaoyan Ye, Chanjuan Lu, Jingqin Liufu, Jiamin Lin, Lin Dong, Zequn Li, Jing Zhuang, Chuxiong Int J Mol Sci Article Rice (Oryza sativa L.) is an important food crop species in China. Cultivating high-yielding rice varieties that have a high photosynthetic efficiency is an important goal of rice breeding in China. In recent years, due to the continual innovation of molecular breeding methods, many excellent genes have been applied in rice breeding, which is highly important for increasing rice yields. In this paper, the hexokinase gene OsHXK1 was knocked out via the CRISPR/Cas9 gene-editing method in the indica rice varieties Huanghuazhan, Meixiangzhan, and Wushansimiao, and OsHXK1-CRISPR/Cas9 lines were obtained. According to the results of a phenotypic analysis and agronomic trait statistics, the OsHXK1-CRISPR/Cas9 plants presented increased light saturation points, stomatal conductance, light tolerance, photosynthetic products, and rice yields. Moreover, transcriptome analysis showed that the expression of photosynthesis-related genes significantly increased. Taken together, our results revealed that knocking out OsHXK1 via the CRISPR/Cas9 gene-editing method could effectively lead to the cultivation of high-photosynthetic efficiency and high-yielding rice varieties. They also revealed the important roles of OsHXK1 in the regulation of rice yield and photosynthesis. MDPI 2021-09-02 /pmc/articles/PMC8430575/ /pubmed/34502462 http://dx.doi.org/10.3390/ijms22179554 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zheng, Shaoyan Ye, Chanjuan Lu, Jingqin Liufu, Jiamin Lin, Lin Dong, Zequn Li, Jing Zhuang, Chuxiong Improving the Rice Photosynthetic Efficiency and Yield by Editing OsHXK1 via CRISPR/Cas9 System |
title | Improving the Rice Photosynthetic Efficiency and Yield by Editing OsHXK1 via CRISPR/Cas9 System |
title_full | Improving the Rice Photosynthetic Efficiency and Yield by Editing OsHXK1 via CRISPR/Cas9 System |
title_fullStr | Improving the Rice Photosynthetic Efficiency and Yield by Editing OsHXK1 via CRISPR/Cas9 System |
title_full_unstemmed | Improving the Rice Photosynthetic Efficiency and Yield by Editing OsHXK1 via CRISPR/Cas9 System |
title_short | Improving the Rice Photosynthetic Efficiency and Yield by Editing OsHXK1 via CRISPR/Cas9 System |
title_sort | improving the rice photosynthetic efficiency and yield by editing oshxk1 via crispr/cas9 system |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8430575/ https://www.ncbi.nlm.nih.gov/pubmed/34502462 http://dx.doi.org/10.3390/ijms22179554 |
work_keys_str_mv | AT zhengshaoyan improvingthericephotosyntheticefficiencyandyieldbyeditingoshxk1viacrisprcas9system AT yechanjuan improvingthericephotosyntheticefficiencyandyieldbyeditingoshxk1viacrisprcas9system AT lujingqin improvingthericephotosyntheticefficiencyandyieldbyeditingoshxk1viacrisprcas9system AT liufujiamin improvingthericephotosyntheticefficiencyandyieldbyeditingoshxk1viacrisprcas9system AT linlin improvingthericephotosyntheticefficiencyandyieldbyeditingoshxk1viacrisprcas9system AT dongzequn improvingthericephotosyntheticefficiencyandyieldbyeditingoshxk1viacrisprcas9system AT lijing improvingthericephotosyntheticefficiencyandyieldbyeditingoshxk1viacrisprcas9system AT zhuangchuxiong improvingthericephotosyntheticefficiencyandyieldbyeditingoshxk1viacrisprcas9system |