Cargando…
Mammalian and Invertebrate Models as Complementary Tools for Gaining Mechanistic Insight on Muscle Responses to Spaceflight
Bioinformatics approaches have proven useful in understanding biological responses to spaceflight. Spaceflight experiments remain resource intensive and rare. One outstanding issue is how to maximize scientific output from a limited number of omics datasets from traditional animal models including n...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8430797/ https://www.ncbi.nlm.nih.gov/pubmed/34502375 http://dx.doi.org/10.3390/ijms22179470 |
_version_ | 1783750788391108608 |
---|---|
author | Cahill, Thomas Cope, Henry Bass, Joseph J. Overbey, Eliah G. Gilbert, Rachel da Silveira, Willian Abraham Paul, Amber M. Mishra, Tejaswini Herranz, Raúl Reinsch, Sigrid S. Costes, Sylvain V. Hardiman, Gary Szewczyk, Nathaniel J. Tahimic, Candice G. T. |
author_facet | Cahill, Thomas Cope, Henry Bass, Joseph J. Overbey, Eliah G. Gilbert, Rachel da Silveira, Willian Abraham Paul, Amber M. Mishra, Tejaswini Herranz, Raúl Reinsch, Sigrid S. Costes, Sylvain V. Hardiman, Gary Szewczyk, Nathaniel J. Tahimic, Candice G. T. |
author_sort | Cahill, Thomas |
collection | PubMed |
description | Bioinformatics approaches have proven useful in understanding biological responses to spaceflight. Spaceflight experiments remain resource intensive and rare. One outstanding issue is how to maximize scientific output from a limited number of omics datasets from traditional animal models including nematodes, fruitfly, and rodents. The utility of omics data from invertebrate models in anticipating mammalian responses to spaceflight has not been fully explored. Hence, we performed comparative analyses of transcriptomes of soleus and extensor digitorum longus (EDL) in mice that underwent 37 days of spaceflight. Results indicate shared stress responses and altered circadian rhythm. EDL showed more robust growth signals and Pde2a downregulation, possibly underlying its resistance to atrophy versus soleus. Spaceflight and hindlimb unloading mice shared differential regulation of proliferation, circadian, and neuronal signaling. Shared gene regulation in muscles of humans on bedrest and space flown rodents suggest targets for mitigating muscle atrophy in space and on Earth. Spaceflight responses of C. elegans were more similar to EDL. Discrete life stages of D. melanogaster have distinct utility in anticipating EDL and soleus responses. In summary, spaceflight leads to shared and discrete molecular responses between muscle types and invertebrate models may augment mechanistic knowledge gained from rodent spaceflight and ground-based studies. |
format | Online Article Text |
id | pubmed-8430797 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-84307972021-09-11 Mammalian and Invertebrate Models as Complementary Tools for Gaining Mechanistic Insight on Muscle Responses to Spaceflight Cahill, Thomas Cope, Henry Bass, Joseph J. Overbey, Eliah G. Gilbert, Rachel da Silveira, Willian Abraham Paul, Amber M. Mishra, Tejaswini Herranz, Raúl Reinsch, Sigrid S. Costes, Sylvain V. Hardiman, Gary Szewczyk, Nathaniel J. Tahimic, Candice G. T. Int J Mol Sci Article Bioinformatics approaches have proven useful in understanding biological responses to spaceflight. Spaceflight experiments remain resource intensive and rare. One outstanding issue is how to maximize scientific output from a limited number of omics datasets from traditional animal models including nematodes, fruitfly, and rodents. The utility of omics data from invertebrate models in anticipating mammalian responses to spaceflight has not been fully explored. Hence, we performed comparative analyses of transcriptomes of soleus and extensor digitorum longus (EDL) in mice that underwent 37 days of spaceflight. Results indicate shared stress responses and altered circadian rhythm. EDL showed more robust growth signals and Pde2a downregulation, possibly underlying its resistance to atrophy versus soleus. Spaceflight and hindlimb unloading mice shared differential regulation of proliferation, circadian, and neuronal signaling. Shared gene regulation in muscles of humans on bedrest and space flown rodents suggest targets for mitigating muscle atrophy in space and on Earth. Spaceflight responses of C. elegans were more similar to EDL. Discrete life stages of D. melanogaster have distinct utility in anticipating EDL and soleus responses. In summary, spaceflight leads to shared and discrete molecular responses between muscle types and invertebrate models may augment mechanistic knowledge gained from rodent spaceflight and ground-based studies. MDPI 2021-08-31 /pmc/articles/PMC8430797/ /pubmed/34502375 http://dx.doi.org/10.3390/ijms22179470 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Cahill, Thomas Cope, Henry Bass, Joseph J. Overbey, Eliah G. Gilbert, Rachel da Silveira, Willian Abraham Paul, Amber M. Mishra, Tejaswini Herranz, Raúl Reinsch, Sigrid S. Costes, Sylvain V. Hardiman, Gary Szewczyk, Nathaniel J. Tahimic, Candice G. T. Mammalian and Invertebrate Models as Complementary Tools for Gaining Mechanistic Insight on Muscle Responses to Spaceflight |
title | Mammalian and Invertebrate Models as Complementary Tools for Gaining Mechanistic Insight on Muscle Responses to Spaceflight |
title_full | Mammalian and Invertebrate Models as Complementary Tools for Gaining Mechanistic Insight on Muscle Responses to Spaceflight |
title_fullStr | Mammalian and Invertebrate Models as Complementary Tools for Gaining Mechanistic Insight on Muscle Responses to Spaceflight |
title_full_unstemmed | Mammalian and Invertebrate Models as Complementary Tools for Gaining Mechanistic Insight on Muscle Responses to Spaceflight |
title_short | Mammalian and Invertebrate Models as Complementary Tools for Gaining Mechanistic Insight on Muscle Responses to Spaceflight |
title_sort | mammalian and invertebrate models as complementary tools for gaining mechanistic insight on muscle responses to spaceflight |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8430797/ https://www.ncbi.nlm.nih.gov/pubmed/34502375 http://dx.doi.org/10.3390/ijms22179470 |
work_keys_str_mv | AT cahillthomas mammalianandinvertebratemodelsascomplementarytoolsforgainingmechanisticinsightonmuscleresponsestospaceflight AT copehenry mammalianandinvertebratemodelsascomplementarytoolsforgainingmechanisticinsightonmuscleresponsestospaceflight AT bassjosephj mammalianandinvertebratemodelsascomplementarytoolsforgainingmechanisticinsightonmuscleresponsestospaceflight AT overbeyeliahg mammalianandinvertebratemodelsascomplementarytoolsforgainingmechanisticinsightonmuscleresponsestospaceflight AT gilbertrachel mammalianandinvertebratemodelsascomplementarytoolsforgainingmechanisticinsightonmuscleresponsestospaceflight AT dasilveirawillianabraham mammalianandinvertebratemodelsascomplementarytoolsforgainingmechanisticinsightonmuscleresponsestospaceflight AT paulamberm mammalianandinvertebratemodelsascomplementarytoolsforgainingmechanisticinsightonmuscleresponsestospaceflight AT mishratejaswini mammalianandinvertebratemodelsascomplementarytoolsforgainingmechanisticinsightonmuscleresponsestospaceflight AT herranzraul mammalianandinvertebratemodelsascomplementarytoolsforgainingmechanisticinsightonmuscleresponsestospaceflight AT reinschsigrids mammalianandinvertebratemodelsascomplementarytoolsforgainingmechanisticinsightonmuscleresponsestospaceflight AT costessylvainv mammalianandinvertebratemodelsascomplementarytoolsforgainingmechanisticinsightonmuscleresponsestospaceflight AT hardimangary mammalianandinvertebratemodelsascomplementarytoolsforgainingmechanisticinsightonmuscleresponsestospaceflight AT szewczyknathanielj mammalianandinvertebratemodelsascomplementarytoolsforgainingmechanisticinsightonmuscleresponsestospaceflight AT tahimiccandicegt mammalianandinvertebratemodelsascomplementarytoolsforgainingmechanisticinsightonmuscleresponsestospaceflight |