Cargando…

Apoptosis Deregulation and the Development of Cancer Multi-Drug Resistance

SIMPLE SUMMARY: Despite recent therapeutic advances against cancer, many patients do not respond well or respond poorly, to treatment and develop resistance to more than one anti-cancer drug, a term called multi-drug resistance (MDR). One of the main factors that contribute to MDR is the deregulatio...

Descripción completa

Detalles Bibliográficos
Autores principales: Neophytou, Christiana M., Trougakos, Ioannis P., Erin, Nuray, Papageorgis, Panagiotis
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8430856/
https://www.ncbi.nlm.nih.gov/pubmed/34503172
http://dx.doi.org/10.3390/cancers13174363
_version_ 1783750802284740608
author Neophytou, Christiana M.
Trougakos, Ioannis P.
Erin, Nuray
Papageorgis, Panagiotis
author_facet Neophytou, Christiana M.
Trougakos, Ioannis P.
Erin, Nuray
Papageorgis, Panagiotis
author_sort Neophytou, Christiana M.
collection PubMed
description SIMPLE SUMMARY: Despite recent therapeutic advances against cancer, many patients do not respond well or respond poorly, to treatment and develop resistance to more than one anti-cancer drug, a term called multi-drug resistance (MDR). One of the main factors that contribute to MDR is the deregulation of apoptosis or programmed cell death. Herein, we describe the major apoptotic pathways and discuss how pro-apoptotic and anti-apoptotic proteins are modified in cancer cells to convey drug resistance. We also focus on our current understanding related to the interactions between survival and cell death pathways, as well as on mechanisms underlying the balance shift towards cancer cell growth and drug resistance. Moreover, we highlight the role of the tumor microenvironment components in blocking apoptosis in MDR tumors, and we discuss the significance and potential exploitation of epigenetic modifications for cancer treatment. Finally, we summarize the current and future therapeutic approaches for overcoming MDR. ABSTRACT: The ability of tumor cells to evade apoptosis is established as one of the hallmarks of cancer. The deregulation of apoptotic pathways conveys a survival advantage enabling cancer cells to develop multi-drug resistance (MDR), a complex tumor phenotype referring to concurrent resistance toward agents with different function and/or structure. Proteins implicated in the intrinsic pathway of apoptosis, including the Bcl-2 superfamily and Inhibitors of Apoptosis (IAP) family members, as well as their regulator, tumor suppressor p53, have been implicated in the development of MDR in many cancer types. The PI(3)K/AKT pathway is pivotal in promoting survival and proliferation and is often overactive in MDR tumors. In addition, the tumor microenvironment, particularly factors secreted by cancer-associated fibroblasts, can inhibit apoptosis in cancer cells and reduce the effectiveness of different anti-cancer drugs. In this review, we describe the main alterations that occur in apoptosis-and related pathways to promote MDR. We also summarize the main therapeutic approaches against resistant tumors, including agents targeting Bcl-2 family members, small molecule inhibitors against IAPs or AKT and agents of natural origin that may be used as monotherapy or in combination with conventional therapeutics. Finally, we highlight the potential of therapeutic exploitation of epigenetic modifications to reverse the MDR phenotype.
format Online
Article
Text
id pubmed-8430856
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-84308562021-09-11 Apoptosis Deregulation and the Development of Cancer Multi-Drug Resistance Neophytou, Christiana M. Trougakos, Ioannis P. Erin, Nuray Papageorgis, Panagiotis Cancers (Basel) Review SIMPLE SUMMARY: Despite recent therapeutic advances against cancer, many patients do not respond well or respond poorly, to treatment and develop resistance to more than one anti-cancer drug, a term called multi-drug resistance (MDR). One of the main factors that contribute to MDR is the deregulation of apoptosis or programmed cell death. Herein, we describe the major apoptotic pathways and discuss how pro-apoptotic and anti-apoptotic proteins are modified in cancer cells to convey drug resistance. We also focus on our current understanding related to the interactions between survival and cell death pathways, as well as on mechanisms underlying the balance shift towards cancer cell growth and drug resistance. Moreover, we highlight the role of the tumor microenvironment components in blocking apoptosis in MDR tumors, and we discuss the significance and potential exploitation of epigenetic modifications for cancer treatment. Finally, we summarize the current and future therapeutic approaches for overcoming MDR. ABSTRACT: The ability of tumor cells to evade apoptosis is established as one of the hallmarks of cancer. The deregulation of apoptotic pathways conveys a survival advantage enabling cancer cells to develop multi-drug resistance (MDR), a complex tumor phenotype referring to concurrent resistance toward agents with different function and/or structure. Proteins implicated in the intrinsic pathway of apoptosis, including the Bcl-2 superfamily and Inhibitors of Apoptosis (IAP) family members, as well as their regulator, tumor suppressor p53, have been implicated in the development of MDR in many cancer types. The PI(3)K/AKT pathway is pivotal in promoting survival and proliferation and is often overactive in MDR tumors. In addition, the tumor microenvironment, particularly factors secreted by cancer-associated fibroblasts, can inhibit apoptosis in cancer cells and reduce the effectiveness of different anti-cancer drugs. In this review, we describe the main alterations that occur in apoptosis-and related pathways to promote MDR. We also summarize the main therapeutic approaches against resistant tumors, including agents targeting Bcl-2 family members, small molecule inhibitors against IAPs or AKT and agents of natural origin that may be used as monotherapy or in combination with conventional therapeutics. Finally, we highlight the potential of therapeutic exploitation of epigenetic modifications to reverse the MDR phenotype. MDPI 2021-08-28 /pmc/articles/PMC8430856/ /pubmed/34503172 http://dx.doi.org/10.3390/cancers13174363 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Review
Neophytou, Christiana M.
Trougakos, Ioannis P.
Erin, Nuray
Papageorgis, Panagiotis
Apoptosis Deregulation and the Development of Cancer Multi-Drug Resistance
title Apoptosis Deregulation and the Development of Cancer Multi-Drug Resistance
title_full Apoptosis Deregulation and the Development of Cancer Multi-Drug Resistance
title_fullStr Apoptosis Deregulation and the Development of Cancer Multi-Drug Resistance
title_full_unstemmed Apoptosis Deregulation and the Development of Cancer Multi-Drug Resistance
title_short Apoptosis Deregulation and the Development of Cancer Multi-Drug Resistance
title_sort apoptosis deregulation and the development of cancer multi-drug resistance
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8430856/
https://www.ncbi.nlm.nih.gov/pubmed/34503172
http://dx.doi.org/10.3390/cancers13174363
work_keys_str_mv AT neophytouchristianam apoptosisderegulationandthedevelopmentofcancermultidrugresistance
AT trougakosioannisp apoptosisderegulationandthedevelopmentofcancermultidrugresistance
AT erinnuray apoptosisderegulationandthedevelopmentofcancermultidrugresistance
AT papageorgispanagiotis apoptosisderegulationandthedevelopmentofcancermultidrugresistance