Cargando…
Deep Learning Based Prediction of Gas Chromatographic Retention Indices for a Wide Variety of Polar and Mid-Polar Liquid Stationary Phases
Prediction of gas chromatographic retention indices based on compound structure is an important task for analytical chemistry. The predicted retention indices can be used as a reference in a mass spectrometry library search despite the fact that their accuracy is worse in comparison with the experim...
Autores principales: | Matyushin, Dmitriy D., Sholokhova, Anastasia Yu., Buryak, Aleksey K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8430916/ https://www.ncbi.nlm.nih.gov/pubmed/34502099 http://dx.doi.org/10.3390/ijms22179194 |
Ejemplares similares
-
Intelligent Workflow and Software for Non-Target Analysis of Complex Samples Using a Mixture of Toxic Transformation Products of Unsymmetrical Dimethylhydrazine as an Example
por: Sholokhova, Anastasia Yu., et al.
Publicado: (2023) -
Investigating the effect of polarity of stationary and mobile phases on retention of cannabinoids in normal phase liquid chromatography
por: De Luca, Chiara, et al.
Publicado: (2022) -
QSRR Models for Kováts’ Retention Indices of a Variety of Volatile Organic Compounds on Polar and Apolar GC Stationary Phases Using Molecular Connectivity Indexes
por: Ghavami, Raouf, et al.
Publicado: (2010) -
A Deep Convolutional Neural Network for Prediction of Peptide Collision Cross Sections in Ion Mobility Spectrometry
por: Samukhina, Yulia V., et al.
Publicado: (2021) -
Performance of palm fibers as stationary phase for capillary gas chromatographic separations
por: Sun, Tao, et al.
Publicado: (2018)