Cargando…
Histological Grade of Endometrioid Endometrial Cancer and Relapse Risk Can Be Predicted with Machine Learning from Gene Expression Data
SIMPLE SUMMARY: Implementing machine learning methods into the RNA-seq data analysis pipelines can further improve the efficiency of data utilization in clinical decision making. In this article, we present how machine learning methods can be used to go one step further in data analysis of the globa...
Autores principales: | Gargya, Péter, Bálint, Bálint László |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8430924/ https://www.ncbi.nlm.nih.gov/pubmed/34503158 http://dx.doi.org/10.3390/cancers13174348 |
Ejemplares similares
-
L1CAM Expression is Related to Non-Endometrioid Histology, and Prognostic for Poor Outcome in Endometrioid Endometrial Carcinoma
por: Geels, Yvette P., et al.
Publicado: (2016) -
Tumor grade and chemotherapy response in endometrioid endometrial cancer
por: Davidson, Brittany A., et al.
Publicado: (2016) -
Seromucinous component in endometrioid endometrial carcinoma as a histological predictor of prognosis
por: Miyamoto, Morikazu, et al.
Publicado: (2018) -
Myoferlin Expression and Its Correlation with FIGO Histologic Grading in Early-Stage Endometrioid Carcinoma
por: Kim, Min Hye, et al.
Publicado: (2018) -
An Applicable Machine Learning Model Based on Preoperative Examinations Predicts Histology, Stage, and Grade for Endometrial Cancer
por: Feng, Ying, et al.
Publicado: (2022)