Cargando…
Antimicrobial Face Shield: Next Generation of Facial Protective Equipment against SARS-CoV-2 and Multidrug-Resistant Bacteria
Transparent materials used for facial protection equipment provide protection against microbial infections caused by viruses and bacteria, including multidrug-resistant strains. However, transparent materials used for this type of application are made of materials that do not possess antimicrobial a...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8431192/ https://www.ncbi.nlm.nih.gov/pubmed/34502431 http://dx.doi.org/10.3390/ijms22179518 |
_version_ | 1783750878971297792 |
---|---|
author | Tuñón-Molina, Alberto Martí, Miguel Muramoto, Yukiko Noda, Takeshi Takayama, Kazuo Serrano-Aroca, Ángel |
author_facet | Tuñón-Molina, Alberto Martí, Miguel Muramoto, Yukiko Noda, Takeshi Takayama, Kazuo Serrano-Aroca, Ángel |
author_sort | Tuñón-Molina, Alberto |
collection | PubMed |
description | Transparent materials used for facial protection equipment provide protection against microbial infections caused by viruses and bacteria, including multidrug-resistant strains. However, transparent materials used for this type of application are made of materials that do not possess antimicrobial activity. They just avoid direct contact between the person and the biological agent. Therefore, healthy people can become infected through contact of the contaminated material surfaces and this equipment constitute an increasing source of infectious biological waste. Furthermore, infected people can transmit microbial infections easily because the protective equipment do not inactivate the microbial load generated while breathing, sneezing or coughing. In this regard, the goal of this work consisted of fabricating a transparent face shield with intrinsic antimicrobial activity that could provide extra-protection against infectious agents and reduce the generation of infectious waste. Thus, a single-use transparent antimicrobial face shield composed of polyethylene terephthalate and an antimicrobial coating of benzalkonium chloride has been developed for the next generation of facial protective equipment. The antimicrobial coating was analyzed by atomic force microscopy and field emission scanning electron microscopy with elemental analysis. This is the first facial transparent protective material capable of inactivating enveloped viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in less than one minute of contact, and the methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis. Bacterial infections contribute to severe pneumonia associated with the SARS-CoV-2 infection, and their resistance to antibiotics is increasing. Our extra protective broad-spectrum antimicrobial composite material could also be applied for the fabrication of other facial protective tools such as such as goggles, helmets, plastic masks and space separation screens used for counters or vehicles. This low-cost technology would be very useful to combat the current pandemic and protect health care workers from multidrug-resistant infections in developed and underdeveloped countries. |
format | Online Article Text |
id | pubmed-8431192 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-84311922021-09-11 Antimicrobial Face Shield: Next Generation of Facial Protective Equipment against SARS-CoV-2 and Multidrug-Resistant Bacteria Tuñón-Molina, Alberto Martí, Miguel Muramoto, Yukiko Noda, Takeshi Takayama, Kazuo Serrano-Aroca, Ángel Int J Mol Sci Article Transparent materials used for facial protection equipment provide protection against microbial infections caused by viruses and bacteria, including multidrug-resistant strains. However, transparent materials used for this type of application are made of materials that do not possess antimicrobial activity. They just avoid direct contact between the person and the biological agent. Therefore, healthy people can become infected through contact of the contaminated material surfaces and this equipment constitute an increasing source of infectious biological waste. Furthermore, infected people can transmit microbial infections easily because the protective equipment do not inactivate the microbial load generated while breathing, sneezing or coughing. In this regard, the goal of this work consisted of fabricating a transparent face shield with intrinsic antimicrobial activity that could provide extra-protection against infectious agents and reduce the generation of infectious waste. Thus, a single-use transparent antimicrobial face shield composed of polyethylene terephthalate and an antimicrobial coating of benzalkonium chloride has been developed for the next generation of facial protective equipment. The antimicrobial coating was analyzed by atomic force microscopy and field emission scanning electron microscopy with elemental analysis. This is the first facial transparent protective material capable of inactivating enveloped viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in less than one minute of contact, and the methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis. Bacterial infections contribute to severe pneumonia associated with the SARS-CoV-2 infection, and their resistance to antibiotics is increasing. Our extra protective broad-spectrum antimicrobial composite material could also be applied for the fabrication of other facial protective tools such as such as goggles, helmets, plastic masks and space separation screens used for counters or vehicles. This low-cost technology would be very useful to combat the current pandemic and protect health care workers from multidrug-resistant infections in developed and underdeveloped countries. MDPI 2021-09-01 /pmc/articles/PMC8431192/ /pubmed/34502431 http://dx.doi.org/10.3390/ijms22179518 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Tuñón-Molina, Alberto Martí, Miguel Muramoto, Yukiko Noda, Takeshi Takayama, Kazuo Serrano-Aroca, Ángel Antimicrobial Face Shield: Next Generation of Facial Protective Equipment against SARS-CoV-2 and Multidrug-Resistant Bacteria |
title | Antimicrobial Face Shield: Next Generation of Facial Protective Equipment against SARS-CoV-2 and Multidrug-Resistant Bacteria |
title_full | Antimicrobial Face Shield: Next Generation of Facial Protective Equipment against SARS-CoV-2 and Multidrug-Resistant Bacteria |
title_fullStr | Antimicrobial Face Shield: Next Generation of Facial Protective Equipment against SARS-CoV-2 and Multidrug-Resistant Bacteria |
title_full_unstemmed | Antimicrobial Face Shield: Next Generation of Facial Protective Equipment against SARS-CoV-2 and Multidrug-Resistant Bacteria |
title_short | Antimicrobial Face Shield: Next Generation of Facial Protective Equipment against SARS-CoV-2 and Multidrug-Resistant Bacteria |
title_sort | antimicrobial face shield: next generation of facial protective equipment against sars-cov-2 and multidrug-resistant bacteria |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8431192/ https://www.ncbi.nlm.nih.gov/pubmed/34502431 http://dx.doi.org/10.3390/ijms22179518 |
work_keys_str_mv | AT tunonmolinaalberto antimicrobialfaceshieldnextgenerationoffacialprotectiveequipmentagainstsarscov2andmultidrugresistantbacteria AT martimiguel antimicrobialfaceshieldnextgenerationoffacialprotectiveequipmentagainstsarscov2andmultidrugresistantbacteria AT muramotoyukiko antimicrobialfaceshieldnextgenerationoffacialprotectiveequipmentagainstsarscov2andmultidrugresistantbacteria AT nodatakeshi antimicrobialfaceshieldnextgenerationoffacialprotectiveequipmentagainstsarscov2andmultidrugresistantbacteria AT takayamakazuo antimicrobialfaceshieldnextgenerationoffacialprotectiveequipmentagainstsarscov2andmultidrugresistantbacteria AT serranoarocaangel antimicrobialfaceshieldnextgenerationoffacialprotectiveequipmentagainstsarscov2andmultidrugresistantbacteria |