Cargando…
Development of a Novel Electrochemical Biosensor Based on Carbon Nanofibers–Cobalt Phthalocyanine–Laccase for the Detection of p-Coumaric Acid in Phytoproducts
The present paper developed a new enzymatic biosensor whose support is a screen-printed electrode based on carbon nanofibers modified with cobalt phthalocyanine and laccase (CNF-CoPc-Lac/SPE) to determine the p-coumaric acid (PCA) content by cyclic voltammetry and square wave voltammetry. Sensor mod...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8431354/ https://www.ncbi.nlm.nih.gov/pubmed/34502203 http://dx.doi.org/10.3390/ijms22179302 |
_version_ | 1783750917075501056 |
---|---|
author | Bounegru, Alexandra Virginia Apetrei, Constantin |
author_facet | Bounegru, Alexandra Virginia Apetrei, Constantin |
author_sort | Bounegru, Alexandra Virginia |
collection | PubMed |
description | The present paper developed a new enzymatic biosensor whose support is a screen-printed electrode based on carbon nanofibers modified with cobalt phthalocyanine and laccase (CNF-CoPc-Lac/SPE) to determine the p-coumaric acid (PCA) content by cyclic voltammetry and square wave voltammetry. Sensor modification was achieved by the casting and cross-linking technique, using glutaraldehyde as a reticulation agent. The biosensor’s response showed the PCA redox processes in a very stable and sensitive manner. The calibration curve was developed for the concentration range of p-coumaric acid of 0.1–202.5 μM, using cyclic voltammetry and chronoamperometry. The biosensor yielded optimal results for the linearity range 0.4–6.4 μM and stood out by low LOD and LOQ values, i.e., 4.83 × 10(−7) M and 1.61 × 10(−)(6) M, respectively. PCA was successfully determined in three phytoproducts of complex composition. The results obtained by the voltammetric method were compared to the ones obtained by the FTIR method. The amount of p-coumaric acid determined by means of CNF-CoPc-Lac/SPE was close to the one obtained by the standard spectrometric method. |
format | Online Article Text |
id | pubmed-8431354 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-84313542021-09-11 Development of a Novel Electrochemical Biosensor Based on Carbon Nanofibers–Cobalt Phthalocyanine–Laccase for the Detection of p-Coumaric Acid in Phytoproducts Bounegru, Alexandra Virginia Apetrei, Constantin Int J Mol Sci Article The present paper developed a new enzymatic biosensor whose support is a screen-printed electrode based on carbon nanofibers modified with cobalt phthalocyanine and laccase (CNF-CoPc-Lac/SPE) to determine the p-coumaric acid (PCA) content by cyclic voltammetry and square wave voltammetry. Sensor modification was achieved by the casting and cross-linking technique, using glutaraldehyde as a reticulation agent. The biosensor’s response showed the PCA redox processes in a very stable and sensitive manner. The calibration curve was developed for the concentration range of p-coumaric acid of 0.1–202.5 μM, using cyclic voltammetry and chronoamperometry. The biosensor yielded optimal results for the linearity range 0.4–6.4 μM and stood out by low LOD and LOQ values, i.e., 4.83 × 10(−7) M and 1.61 × 10(−)(6) M, respectively. PCA was successfully determined in three phytoproducts of complex composition. The results obtained by the voltammetric method were compared to the ones obtained by the FTIR method. The amount of p-coumaric acid determined by means of CNF-CoPc-Lac/SPE was close to the one obtained by the standard spectrometric method. MDPI 2021-08-27 /pmc/articles/PMC8431354/ /pubmed/34502203 http://dx.doi.org/10.3390/ijms22179302 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Bounegru, Alexandra Virginia Apetrei, Constantin Development of a Novel Electrochemical Biosensor Based on Carbon Nanofibers–Cobalt Phthalocyanine–Laccase for the Detection of p-Coumaric Acid in Phytoproducts |
title | Development of a Novel Electrochemical Biosensor Based on Carbon Nanofibers–Cobalt Phthalocyanine–Laccase for the Detection of p-Coumaric Acid in Phytoproducts |
title_full | Development of a Novel Electrochemical Biosensor Based on Carbon Nanofibers–Cobalt Phthalocyanine–Laccase for the Detection of p-Coumaric Acid in Phytoproducts |
title_fullStr | Development of a Novel Electrochemical Biosensor Based on Carbon Nanofibers–Cobalt Phthalocyanine–Laccase for the Detection of p-Coumaric Acid in Phytoproducts |
title_full_unstemmed | Development of a Novel Electrochemical Biosensor Based on Carbon Nanofibers–Cobalt Phthalocyanine–Laccase for the Detection of p-Coumaric Acid in Phytoproducts |
title_short | Development of a Novel Electrochemical Biosensor Based on Carbon Nanofibers–Cobalt Phthalocyanine–Laccase for the Detection of p-Coumaric Acid in Phytoproducts |
title_sort | development of a novel electrochemical biosensor based on carbon nanofibers–cobalt phthalocyanine–laccase for the detection of p-coumaric acid in phytoproducts |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8431354/ https://www.ncbi.nlm.nih.gov/pubmed/34502203 http://dx.doi.org/10.3390/ijms22179302 |
work_keys_str_mv | AT bounegrualexandravirginia developmentofanovelelectrochemicalbiosensorbasedoncarbonnanofiberscobaltphthalocyaninelaccaseforthedetectionofpcoumaricacidinphytoproducts AT apetreiconstantin developmentofanovelelectrochemicalbiosensorbasedoncarbonnanofiberscobaltphthalocyaninelaccaseforthedetectionofpcoumaricacidinphytoproducts |