Cargando…

The Amino Acid-mTORC1 Pathway Mediates APEC TW-XM-Induced Inflammation in bEnd.3 Cells

The blood–brain barrier (BBB) is key to establishing and maintaining homeostasis in the central nervous system (CNS); meningitis bacterial infection can disrupt the integrity of BBB by inducing an inflammatory response. The changes in the cerebral uptake of amino acids may contribute to inflammatory...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Dong, Xu, Shu, Wang, Yiting, Bin, Peng, Zhu, Guoqiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8431488/
https://www.ncbi.nlm.nih.gov/pubmed/34502151
http://dx.doi.org/10.3390/ijms22179245
Descripción
Sumario:The blood–brain barrier (BBB) is key to establishing and maintaining homeostasis in the central nervous system (CNS); meningitis bacterial infection can disrupt the integrity of BBB by inducing an inflammatory response. The changes in the cerebral uptake of amino acids may contribute to inflammatory response during infection and were accompanied by high expression of amino acid transporters leading to increased amino acid uptake. However, it is unclear whether amino acid uptake is changed and how to affect inflammatory responses in mouse brain microvascular endothelial (bEnd.3) cells in response to Avian Pathogenic Escherichia coli TW-XM (APEC XM) infection. Here, we firstly found that APEC XM infection could induce serine (Ser) and glutamate (Glu) transport from extracellular into intracellular in bEnd.3 cells. Meanwhile, we also shown that the expression sodium-dependent neutral amino acid transporter 2 (SNAT2) for Ser and excitatory amino acid transporter 4 (EAAT4) for Glu was also significantly elevated during infection. Then, in amino acid deficiency or supplementation medium, we found that Ser or Glu transport were involving in increasing SNAT2 or EAAT4 expression, mTORC1 (mechanistic target of rapamycin complex 1) activation and inflammation, respectively. Of note, Ser or Glu transport were inhibited after SNAT2 silencing or EAAT4 silencing, resulting in inhibition of mTORC1 pathway activation, and inflammation compared with the APEC XM infection group. Moreover, pEGFP-SNAT2 overexpression and pEGFP-EAAT4 overexpression in bEnd.3 cells all could promote amino acid uptake, activation of the mTORC1 pathway and inflammation during infection. We further found mTORC1 silencing could inhibit inflammation, the expression of SNAT2 and EAAT4, and amino acid uptake. Taken together, our results demonstrated that APEC TW-XM infection can induce Ser or Glu uptake depending on amino acid transporters transportation, and then activate amino acid-mTORC1 pathway to induce inflammation in bEnd.3 cells.