Cargando…
Structural Features of a Full-Length Ubiquitin Ligase Responsible for the Formation of Patches at the Plasma Membrane
Plant U-box armadillo repeat (PUB-ARM) ubiquitin (Ub) ligases have important functions in plant defense through the ubiquitination of target proteins. Defense against pathogens involves vesicle trafficking and the formation of extracellular vesicles. The PUB-ARM protein SENESCENCE ASSOCIATED UBIQUIT...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8431560/ https://www.ncbi.nlm.nih.gov/pubmed/34502365 http://dx.doi.org/10.3390/ijms22179455 |
_version_ | 1783750966211772416 |
---|---|
author | Knop, Jan Lienemann, Tim El-Kilani, Haifa Falke, Sven Krings, Catharina Sindalovskaya, Maria Bergler, Johannes Betzel, Christian Hoth, Stefan |
author_facet | Knop, Jan Lienemann, Tim El-Kilani, Haifa Falke, Sven Krings, Catharina Sindalovskaya, Maria Bergler, Johannes Betzel, Christian Hoth, Stefan |
author_sort | Knop, Jan |
collection | PubMed |
description | Plant U-box armadillo repeat (PUB-ARM) ubiquitin (Ub) ligases have important functions in plant defense through the ubiquitination of target proteins. Defense against pathogens involves vesicle trafficking and the formation of extracellular vesicles. The PUB-ARM protein SENESCENCE ASSOCIATED UBIQUITIN E3 LIGASE1 (SAUL1) can form patches at the plasma membrane related to tethering multi-vesicular bodies (MVBs) to the plasma membrane. We uncovered the structure of a full-length plant ubiquitin ligase and the structural requirements of SAUL1, which are crucial for its function in patch formation. We resolved the structure of SAUL1 monomers by small-angle X-ray scattering (SAXS). The SAUL1 model showed that SAUL1 consists of two domains: a domain containing the N-terminal U-box and armadillo (ARM) repeats and the C-terminal ARM repeat domain, which includes a positively charged groove. We showed that all C-terminal ARM repeats are essential for patch formation and that this function requires arginine residue at position 736. By applying SAXS to polydisperse SAUL1 systems, the oligomerization of SAUL1 is detectable, with SAUL1 tetramers being the most prominent oligomers at higher concentrations. The oligomerization domain consists of the N-terminal U-box and some N-terminal ARM repeats. Deleting the U-box resulted in the promotion of the SAUL1 tethering function. Our findings indicate that structural changes in SAUL1 may be fundamental to its function in forming patches at the plasma membrane. |
format | Online Article Text |
id | pubmed-8431560 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-84315602021-09-11 Structural Features of a Full-Length Ubiquitin Ligase Responsible for the Formation of Patches at the Plasma Membrane Knop, Jan Lienemann, Tim El-Kilani, Haifa Falke, Sven Krings, Catharina Sindalovskaya, Maria Bergler, Johannes Betzel, Christian Hoth, Stefan Int J Mol Sci Article Plant U-box armadillo repeat (PUB-ARM) ubiquitin (Ub) ligases have important functions in plant defense through the ubiquitination of target proteins. Defense against pathogens involves vesicle trafficking and the formation of extracellular vesicles. The PUB-ARM protein SENESCENCE ASSOCIATED UBIQUITIN E3 LIGASE1 (SAUL1) can form patches at the plasma membrane related to tethering multi-vesicular bodies (MVBs) to the plasma membrane. We uncovered the structure of a full-length plant ubiquitin ligase and the structural requirements of SAUL1, which are crucial for its function in patch formation. We resolved the structure of SAUL1 monomers by small-angle X-ray scattering (SAXS). The SAUL1 model showed that SAUL1 consists of two domains: a domain containing the N-terminal U-box and armadillo (ARM) repeats and the C-terminal ARM repeat domain, which includes a positively charged groove. We showed that all C-terminal ARM repeats are essential for patch formation and that this function requires arginine residue at position 736. By applying SAXS to polydisperse SAUL1 systems, the oligomerization of SAUL1 is detectable, with SAUL1 tetramers being the most prominent oligomers at higher concentrations. The oligomerization domain consists of the N-terminal U-box and some N-terminal ARM repeats. Deleting the U-box resulted in the promotion of the SAUL1 tethering function. Our findings indicate that structural changes in SAUL1 may be fundamental to its function in forming patches at the plasma membrane. MDPI 2021-08-31 /pmc/articles/PMC8431560/ /pubmed/34502365 http://dx.doi.org/10.3390/ijms22179455 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Knop, Jan Lienemann, Tim El-Kilani, Haifa Falke, Sven Krings, Catharina Sindalovskaya, Maria Bergler, Johannes Betzel, Christian Hoth, Stefan Structural Features of a Full-Length Ubiquitin Ligase Responsible for the Formation of Patches at the Plasma Membrane |
title | Structural Features of a Full-Length Ubiquitin Ligase Responsible for the Formation of Patches at the Plasma Membrane |
title_full | Structural Features of a Full-Length Ubiquitin Ligase Responsible for the Formation of Patches at the Plasma Membrane |
title_fullStr | Structural Features of a Full-Length Ubiquitin Ligase Responsible for the Formation of Patches at the Plasma Membrane |
title_full_unstemmed | Structural Features of a Full-Length Ubiquitin Ligase Responsible for the Formation of Patches at the Plasma Membrane |
title_short | Structural Features of a Full-Length Ubiquitin Ligase Responsible for the Formation of Patches at the Plasma Membrane |
title_sort | structural features of a full-length ubiquitin ligase responsible for the formation of patches at the plasma membrane |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8431560/ https://www.ncbi.nlm.nih.gov/pubmed/34502365 http://dx.doi.org/10.3390/ijms22179455 |
work_keys_str_mv | AT knopjan structuralfeaturesofafulllengthubiquitinligaseresponsiblefortheformationofpatchesattheplasmamembrane AT lienemanntim structuralfeaturesofafulllengthubiquitinligaseresponsiblefortheformationofpatchesattheplasmamembrane AT elkilanihaifa structuralfeaturesofafulllengthubiquitinligaseresponsiblefortheformationofpatchesattheplasmamembrane AT falkesven structuralfeaturesofafulllengthubiquitinligaseresponsiblefortheformationofpatchesattheplasmamembrane AT kringscatharina structuralfeaturesofafulllengthubiquitinligaseresponsiblefortheformationofpatchesattheplasmamembrane AT sindalovskayamaria structuralfeaturesofafulllengthubiquitinligaseresponsiblefortheformationofpatchesattheplasmamembrane AT berglerjohannes structuralfeaturesofafulllengthubiquitinligaseresponsiblefortheformationofpatchesattheplasmamembrane AT betzelchristian structuralfeaturesofafulllengthubiquitinligaseresponsiblefortheformationofpatchesattheplasmamembrane AT hothstefan structuralfeaturesofafulllengthubiquitinligaseresponsiblefortheformationofpatchesattheplasmamembrane |