Cargando…
A Comprehensive Evaluation and Benchmarking of Convolutional Neural Networks for Melanoma Diagnosis
SIMPLE SUMMARY: Melanoma is the most dangerous type of skin cancer. It grows quickly and has the ability to spread to any organ. This study aims to evaluate and benchmark deep learning models for automatic melanoma diagnosis considering nineteen convolutional neural networks and ten criteria. Multi-...
Autores principales: | Alzahrani, Saeed, Al-Bander, Baidaa, Al-Nuaimy, Waleed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8431618/ https://www.ncbi.nlm.nih.gov/pubmed/34503300 http://dx.doi.org/10.3390/cancers13174494 |
Ejemplares similares
-
1D Barcode Detection: Novel Benchmark Datasets and Comprehensive Comparison of Deep Convolutional Neural Network Approaches
por: Kamnardsiri, Teerawat, et al.
Publicado: (2022) -
Benchmarking Audio Signal Representation Techniques for Classification with Convolutional Neural Networks
por: Sharan, Roneel V., et al.
Publicado: (2021) -
A benchmark study of convolutional neural networks in fully automatic segmentation of aortic root
por: Yang, Tingting, et al.
Publicado: (2023) -
Interpretable Diagnosis for Whole-Slide Melanoma Histology Images Using Convolutional Neural Network
por: Xie, Peizhen, et al.
Publicado: (2021) -
A Convolutional Neural Network for Lentigo Diagnosis
por: Zorgui, Sana, et al.
Publicado: (2020)