Cargando…
Novel Approaches Used to Examine and Control Neurogenesis in Parkinson′s Disease
Neurogenesis is a key mechanism of brain development and plasticity, which is impaired in chronic neurodegeneration, including Parkinson’s disease. The accumulation of aberrant α-synuclein is one of the features of PD. Being secreted, this protein produces a prominent neurotoxic effect, alters synap...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8431772/ https://www.ncbi.nlm.nih.gov/pubmed/34502516 http://dx.doi.org/10.3390/ijms22179608 |
_version_ | 1783751015982432256 |
---|---|
author | Salmina, Alla B. Kapkaeva, Marina R. Vetchinova, Anna S. Illarioshkin, Sergey N. |
author_facet | Salmina, Alla B. Kapkaeva, Marina R. Vetchinova, Anna S. Illarioshkin, Sergey N. |
author_sort | Salmina, Alla B. |
collection | PubMed |
description | Neurogenesis is a key mechanism of brain development and plasticity, which is impaired in chronic neurodegeneration, including Parkinson’s disease. The accumulation of aberrant α-synuclein is one of the features of PD. Being secreted, this protein produces a prominent neurotoxic effect, alters synaptic plasticity, deregulates intercellular communication, and supports the development of neuroinflammation, thereby providing propagation of pathological events leading to the establishment of a PD-specific phenotype. Multidirectional and ambiguous effects of α-synuclein on adult neurogenesis suggest that impaired neurogenesis should be considered as a target for the prevention of cell loss and restoration of neurological functions. Thus, stimulation of endogenous neurogenesis or cell-replacement therapy with stem cell-derived differentiated neurons raises new hopes for the development of effective and safe technologies for treating PD neurodegeneration. Given the rapid development of optogenetics, it is not surprising that this method has already been repeatedly tested in manipulating neurogenesis in vivo and in vitro via targeting stem or progenitor cells. However, niche astrocytes could also serve as promising candidates for controlling neuronal differentiation and improving the functional integration of newly formed neurons within the brain tissue. In this review, we mainly focus on current approaches to assess neurogenesis and prospects in the application of optogenetic protocols to restore the neurogenesis in Parkinson’s disease. |
format | Online Article Text |
id | pubmed-8431772 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-84317722021-09-11 Novel Approaches Used to Examine and Control Neurogenesis in Parkinson′s Disease Salmina, Alla B. Kapkaeva, Marina R. Vetchinova, Anna S. Illarioshkin, Sergey N. Int J Mol Sci Review Neurogenesis is a key mechanism of brain development and plasticity, which is impaired in chronic neurodegeneration, including Parkinson’s disease. The accumulation of aberrant α-synuclein is one of the features of PD. Being secreted, this protein produces a prominent neurotoxic effect, alters synaptic plasticity, deregulates intercellular communication, and supports the development of neuroinflammation, thereby providing propagation of pathological events leading to the establishment of a PD-specific phenotype. Multidirectional and ambiguous effects of α-synuclein on adult neurogenesis suggest that impaired neurogenesis should be considered as a target for the prevention of cell loss and restoration of neurological functions. Thus, stimulation of endogenous neurogenesis or cell-replacement therapy with stem cell-derived differentiated neurons raises new hopes for the development of effective and safe technologies for treating PD neurodegeneration. Given the rapid development of optogenetics, it is not surprising that this method has already been repeatedly tested in manipulating neurogenesis in vivo and in vitro via targeting stem or progenitor cells. However, niche astrocytes could also serve as promising candidates for controlling neuronal differentiation and improving the functional integration of newly formed neurons within the brain tissue. In this review, we mainly focus on current approaches to assess neurogenesis and prospects in the application of optogenetic protocols to restore the neurogenesis in Parkinson’s disease. MDPI 2021-09-04 /pmc/articles/PMC8431772/ /pubmed/34502516 http://dx.doi.org/10.3390/ijms22179608 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Salmina, Alla B. Kapkaeva, Marina R. Vetchinova, Anna S. Illarioshkin, Sergey N. Novel Approaches Used to Examine and Control Neurogenesis in Parkinson′s Disease |
title | Novel Approaches Used to Examine and Control Neurogenesis in Parkinson′s Disease |
title_full | Novel Approaches Used to Examine and Control Neurogenesis in Parkinson′s Disease |
title_fullStr | Novel Approaches Used to Examine and Control Neurogenesis in Parkinson′s Disease |
title_full_unstemmed | Novel Approaches Used to Examine and Control Neurogenesis in Parkinson′s Disease |
title_short | Novel Approaches Used to Examine and Control Neurogenesis in Parkinson′s Disease |
title_sort | novel approaches used to examine and control neurogenesis in parkinson′s disease |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8431772/ https://www.ncbi.nlm.nih.gov/pubmed/34502516 http://dx.doi.org/10.3390/ijms22179608 |
work_keys_str_mv | AT salminaallab novelapproachesusedtoexamineandcontrolneurogenesisinparkinsonsdisease AT kapkaevamarinar novelapproachesusedtoexamineandcontrolneurogenesisinparkinsonsdisease AT vetchinovaannas novelapproachesusedtoexamineandcontrolneurogenesisinparkinsonsdisease AT illarioshkinsergeyn novelapproachesusedtoexamineandcontrolneurogenesisinparkinsonsdisease |