Cargando…
Multiple Imputation Approaches Applied to the Missing Value Problem in Bottom-Up Proteomics
Analysis of differential abundance in proteomics data sets requires careful application of missing value imputation. Missing abundance values widely vary when performing comparisons across different sample treatments. For example, one would expect a consistent rate of “missing at random” (MAR) acros...
Autores principales: | Gardner, Miranda L., Freitas, Michael A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8431783/ https://www.ncbi.nlm.nih.gov/pubmed/34502557 http://dx.doi.org/10.3390/ijms22179650 |
Ejemplares similares
-
NAguideR: performing and prioritizing missing value imputations for consistent bottom-up proteomic analyses
por: Wang, Shisheng, et al.
Publicado: (2020) -
Missing value imputation in proximity extension assay-based targeted proteomics data
por: Lenz, Michael, et al.
Publicado: (2020) -
Evaluation of linear models and missing value imputation for the analysis of peptide-centric proteomics
por: Berg, Philip, et al.
Publicado: (2019) -
Missing value imputation for epistatic MAPs
por: Ryan, Colm, et al.
Publicado: (2010) -
Assessment of label-free quantification and missing value imputation for proteomics in non-human primates
por: Hamid, Zeeshan, et al.
Publicado: (2022)