Cargando…

De Novo Missense Mutations in TNNC1 and TNNI3 Causing Severe Infantile Cardiomyopathy Affect Myofilament Structure and Function and Are Modulated by Troponin Targeting Agents

Rare pediatric non-compaction and restrictive cardiomyopathy are usually associated with a rapid and severe disease progression. While the non-compaction phenotype is characterized by structural defects and is correlated with systolic dysfunction, the restrictive phenotype exhibits diastolic dysfunc...

Descripción completa

Detalles Bibliográficos
Autores principales: Hassoun, Roua, Budde, Heidi, Mannherz, Hans Georg, Lódi, Mária, Fujita-Becker, Setsuko, Laser, Kai Thorsten, Gärtner, Anna, Klingel, Karin, Möhner, Desirée, Stehle, Robert, Sultana, Innas, Schaaf, Thomas, Majchrzak, Mario, Krause, Verena, Herrmann, Christian, Nowaczyk, Marc M., Mügge, Andreas, Pfitzer, Gabriele, Schröder, Rasmus R., Hamdani, Nazha, Milting, Hendrik, Jaquet, Kornelia, Cimiotti, Diana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8431798/
https://www.ncbi.nlm.nih.gov/pubmed/34502534
http://dx.doi.org/10.3390/ijms22179625
_version_ 1783751020935905280
author Hassoun, Roua
Budde, Heidi
Mannherz, Hans Georg
Lódi, Mária
Fujita-Becker, Setsuko
Laser, Kai Thorsten
Gärtner, Anna
Klingel, Karin
Möhner, Desirée
Stehle, Robert
Sultana, Innas
Schaaf, Thomas
Majchrzak, Mario
Krause, Verena
Herrmann, Christian
Nowaczyk, Marc M.
Mügge, Andreas
Pfitzer, Gabriele
Schröder, Rasmus R.
Hamdani, Nazha
Milting, Hendrik
Jaquet, Kornelia
Cimiotti, Diana
author_facet Hassoun, Roua
Budde, Heidi
Mannherz, Hans Georg
Lódi, Mária
Fujita-Becker, Setsuko
Laser, Kai Thorsten
Gärtner, Anna
Klingel, Karin
Möhner, Desirée
Stehle, Robert
Sultana, Innas
Schaaf, Thomas
Majchrzak, Mario
Krause, Verena
Herrmann, Christian
Nowaczyk, Marc M.
Mügge, Andreas
Pfitzer, Gabriele
Schröder, Rasmus R.
Hamdani, Nazha
Milting, Hendrik
Jaquet, Kornelia
Cimiotti, Diana
author_sort Hassoun, Roua
collection PubMed
description Rare pediatric non-compaction and restrictive cardiomyopathy are usually associated with a rapid and severe disease progression. While the non-compaction phenotype is characterized by structural defects and is correlated with systolic dysfunction, the restrictive phenotype exhibits diastolic dysfunction. The molecular mechanisms are poorly understood. Target genes encode among others, the cardiac troponin subunits forming the main regulatory protein complex of the thin filament for muscle contraction. Here, we compare the molecular effects of two infantile de novo point mutations in TNNC1 (p.cTnC-G34S) and TNNI3 (p.cTnI-D127Y) leading to severe non-compaction and restrictive phenotypes, respectively. We used skinned cardiomyocytes, skinned fibers, and reconstituted thin filaments to measure the impact of the mutations on contractile function. We investigated the interaction of these troponin variants with actin and their inter-subunit interactions, as well as the structural integrity of reconstituted thin filaments. Both mutations exhibited similar functional and structural impairments, though the patients developed different phenotypes. Furthermore, the protein quality control system was affected, as shown for TnC-G34S using patient’s myocardial tissue samples. The two troponin targeting agents levosimendan and green tea extract (-)-epigallocatechin-3-gallate (EGCg) stabilized the structural integrity of reconstituted thin filaments and ameliorated contractile function in vitro in some, but not all, aspects to a similar degree for both mutations.
format Online
Article
Text
id pubmed-8431798
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-84317982021-09-11 De Novo Missense Mutations in TNNC1 and TNNI3 Causing Severe Infantile Cardiomyopathy Affect Myofilament Structure and Function and Are Modulated by Troponin Targeting Agents Hassoun, Roua Budde, Heidi Mannherz, Hans Georg Lódi, Mária Fujita-Becker, Setsuko Laser, Kai Thorsten Gärtner, Anna Klingel, Karin Möhner, Desirée Stehle, Robert Sultana, Innas Schaaf, Thomas Majchrzak, Mario Krause, Verena Herrmann, Christian Nowaczyk, Marc M. Mügge, Andreas Pfitzer, Gabriele Schröder, Rasmus R. Hamdani, Nazha Milting, Hendrik Jaquet, Kornelia Cimiotti, Diana Int J Mol Sci Article Rare pediatric non-compaction and restrictive cardiomyopathy are usually associated with a rapid and severe disease progression. While the non-compaction phenotype is characterized by structural defects and is correlated with systolic dysfunction, the restrictive phenotype exhibits diastolic dysfunction. The molecular mechanisms are poorly understood. Target genes encode among others, the cardiac troponin subunits forming the main regulatory protein complex of the thin filament for muscle contraction. Here, we compare the molecular effects of two infantile de novo point mutations in TNNC1 (p.cTnC-G34S) and TNNI3 (p.cTnI-D127Y) leading to severe non-compaction and restrictive phenotypes, respectively. We used skinned cardiomyocytes, skinned fibers, and reconstituted thin filaments to measure the impact of the mutations on contractile function. We investigated the interaction of these troponin variants with actin and their inter-subunit interactions, as well as the structural integrity of reconstituted thin filaments. Both mutations exhibited similar functional and structural impairments, though the patients developed different phenotypes. Furthermore, the protein quality control system was affected, as shown for TnC-G34S using patient’s myocardial tissue samples. The two troponin targeting agents levosimendan and green tea extract (-)-epigallocatechin-3-gallate (EGCg) stabilized the structural integrity of reconstituted thin filaments and ameliorated contractile function in vitro in some, but not all, aspects to a similar degree for both mutations. MDPI 2021-09-06 /pmc/articles/PMC8431798/ /pubmed/34502534 http://dx.doi.org/10.3390/ijms22179625 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Hassoun, Roua
Budde, Heidi
Mannherz, Hans Georg
Lódi, Mária
Fujita-Becker, Setsuko
Laser, Kai Thorsten
Gärtner, Anna
Klingel, Karin
Möhner, Desirée
Stehle, Robert
Sultana, Innas
Schaaf, Thomas
Majchrzak, Mario
Krause, Verena
Herrmann, Christian
Nowaczyk, Marc M.
Mügge, Andreas
Pfitzer, Gabriele
Schröder, Rasmus R.
Hamdani, Nazha
Milting, Hendrik
Jaquet, Kornelia
Cimiotti, Diana
De Novo Missense Mutations in TNNC1 and TNNI3 Causing Severe Infantile Cardiomyopathy Affect Myofilament Structure and Function and Are Modulated by Troponin Targeting Agents
title De Novo Missense Mutations in TNNC1 and TNNI3 Causing Severe Infantile Cardiomyopathy Affect Myofilament Structure and Function and Are Modulated by Troponin Targeting Agents
title_full De Novo Missense Mutations in TNNC1 and TNNI3 Causing Severe Infantile Cardiomyopathy Affect Myofilament Structure and Function and Are Modulated by Troponin Targeting Agents
title_fullStr De Novo Missense Mutations in TNNC1 and TNNI3 Causing Severe Infantile Cardiomyopathy Affect Myofilament Structure and Function and Are Modulated by Troponin Targeting Agents
title_full_unstemmed De Novo Missense Mutations in TNNC1 and TNNI3 Causing Severe Infantile Cardiomyopathy Affect Myofilament Structure and Function and Are Modulated by Troponin Targeting Agents
title_short De Novo Missense Mutations in TNNC1 and TNNI3 Causing Severe Infantile Cardiomyopathy Affect Myofilament Structure and Function and Are Modulated by Troponin Targeting Agents
title_sort de novo missense mutations in tnnc1 and tnni3 causing severe infantile cardiomyopathy affect myofilament structure and function and are modulated by troponin targeting agents
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8431798/
https://www.ncbi.nlm.nih.gov/pubmed/34502534
http://dx.doi.org/10.3390/ijms22179625
work_keys_str_mv AT hassounroua denovomissensemutationsintnnc1andtnni3causingsevereinfantilecardiomyopathyaffectmyofilamentstructureandfunctionandaremodulatedbytroponintargetingagents
AT buddeheidi denovomissensemutationsintnnc1andtnni3causingsevereinfantilecardiomyopathyaffectmyofilamentstructureandfunctionandaremodulatedbytroponintargetingagents
AT mannherzhansgeorg denovomissensemutationsintnnc1andtnni3causingsevereinfantilecardiomyopathyaffectmyofilamentstructureandfunctionandaremodulatedbytroponintargetingagents
AT lodimaria denovomissensemutationsintnnc1andtnni3causingsevereinfantilecardiomyopathyaffectmyofilamentstructureandfunctionandaremodulatedbytroponintargetingagents
AT fujitabeckersetsuko denovomissensemutationsintnnc1andtnni3causingsevereinfantilecardiomyopathyaffectmyofilamentstructureandfunctionandaremodulatedbytroponintargetingagents
AT laserkaithorsten denovomissensemutationsintnnc1andtnni3causingsevereinfantilecardiomyopathyaffectmyofilamentstructureandfunctionandaremodulatedbytroponintargetingagents
AT gartneranna denovomissensemutationsintnnc1andtnni3causingsevereinfantilecardiomyopathyaffectmyofilamentstructureandfunctionandaremodulatedbytroponintargetingagents
AT klingelkarin denovomissensemutationsintnnc1andtnni3causingsevereinfantilecardiomyopathyaffectmyofilamentstructureandfunctionandaremodulatedbytroponintargetingagents
AT mohnerdesiree denovomissensemutationsintnnc1andtnni3causingsevereinfantilecardiomyopathyaffectmyofilamentstructureandfunctionandaremodulatedbytroponintargetingagents
AT stehlerobert denovomissensemutationsintnnc1andtnni3causingsevereinfantilecardiomyopathyaffectmyofilamentstructureandfunctionandaremodulatedbytroponintargetingagents
AT sultanainnas denovomissensemutationsintnnc1andtnni3causingsevereinfantilecardiomyopathyaffectmyofilamentstructureandfunctionandaremodulatedbytroponintargetingagents
AT schaafthomas denovomissensemutationsintnnc1andtnni3causingsevereinfantilecardiomyopathyaffectmyofilamentstructureandfunctionandaremodulatedbytroponintargetingagents
AT majchrzakmario denovomissensemutationsintnnc1andtnni3causingsevereinfantilecardiomyopathyaffectmyofilamentstructureandfunctionandaremodulatedbytroponintargetingagents
AT krauseverena denovomissensemutationsintnnc1andtnni3causingsevereinfantilecardiomyopathyaffectmyofilamentstructureandfunctionandaremodulatedbytroponintargetingagents
AT herrmannchristian denovomissensemutationsintnnc1andtnni3causingsevereinfantilecardiomyopathyaffectmyofilamentstructureandfunctionandaremodulatedbytroponintargetingagents
AT nowaczykmarcm denovomissensemutationsintnnc1andtnni3causingsevereinfantilecardiomyopathyaffectmyofilamentstructureandfunctionandaremodulatedbytroponintargetingagents
AT muggeandreas denovomissensemutationsintnnc1andtnni3causingsevereinfantilecardiomyopathyaffectmyofilamentstructureandfunctionandaremodulatedbytroponintargetingagents
AT pfitzergabriele denovomissensemutationsintnnc1andtnni3causingsevereinfantilecardiomyopathyaffectmyofilamentstructureandfunctionandaremodulatedbytroponintargetingagents
AT schroderrasmusr denovomissensemutationsintnnc1andtnni3causingsevereinfantilecardiomyopathyaffectmyofilamentstructureandfunctionandaremodulatedbytroponintargetingagents
AT hamdaninazha denovomissensemutationsintnnc1andtnni3causingsevereinfantilecardiomyopathyaffectmyofilamentstructureandfunctionandaremodulatedbytroponintargetingagents
AT miltinghendrik denovomissensemutationsintnnc1andtnni3causingsevereinfantilecardiomyopathyaffectmyofilamentstructureandfunctionandaremodulatedbytroponintargetingagents
AT jaquetkornelia denovomissensemutationsintnnc1andtnni3causingsevereinfantilecardiomyopathyaffectmyofilamentstructureandfunctionandaremodulatedbytroponintargetingagents
AT cimiottidiana denovomissensemutationsintnnc1andtnni3causingsevereinfantilecardiomyopathyaffectmyofilamentstructureandfunctionandaremodulatedbytroponintargetingagents