Cargando…
Topo-Pachimetric Accelerated Epi-On Cross-Linking Compared to the Dresden Protocol Using Riboflavin with Vitamin E TPGS: Results of a 2-Year Randomized Study
In the present study (clinical trial registration number: NCT05019768), we compared the clinical outcome of corneal cross-linking with either the standard Dresden (sCXL) or the accelerated custom-fast (aCFXL) ultraviolet A irradiation protocol using riboflavin–D-α-tocopheryl poly(ethylene glycol)-10...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8432027/ https://www.ncbi.nlm.nih.gov/pubmed/34501248 http://dx.doi.org/10.3390/jcm10173799 |
Sumario: | In the present study (clinical trial registration number: NCT05019768), we compared the clinical outcome of corneal cross-linking with either the standard Dresden (sCXL) or the accelerated custom-fast (aCFXL) ultraviolet A irradiation protocol using riboflavin–D-α-tocopheryl poly(ethylene glycol)-1000 succinate for progressive keratoconus. Fifty-four eyes of forty-one patients were randomized to either of the two CXL protocols and checked before treatment and at the 2-year follow-up. The sCXL group was subjected to CXL with 30 min of pre-soaking and 3 mW/cm(2) UVA irradiation for 30 min. The aCFXL group was subjected to CXL with 10 min of pre-soaking and UVA irradiation of 1.8 ± 0.9 mW/cm(2) for 10 min ± 1.5 min. In both groups, a solution of riboflavin–vitamin E TPGS was used. Uncorrected distance visual acuity, corrected distance visual acuity, pachymetry, Scheimpflug tomography, and corneal hysteresis were performed at baseline and after 24 months. Both groups showed a statistically significant improvement in corrected distance visual acuity, and keratometric and corneal hysteresis compared to baseline conditions; no statistically significant differences in outcomes between the two groups were observed. Improvement in refractive, topographic, and biomechanical parameters were observed after sCXL and aCFXL, making the riboflavin–VE-TPGS solution an effective option as a permeation enhancer in CXL procedures. Deeper stromal penetration of riboflavin could be complemented by photo-protection against UVA and free radicals formed during photoinduced processes. |
---|