Cargando…
Predicting Duration of Mechanical Ventilation in Acute Respiratory Distress Syndrome Using Supervised Machine Learning
Background: Acute respiratory distress syndrome (ARDS) is an intense inflammatory process of the lungs. Most ARDS patients require mechanical ventilation (MV). Few studies have investigated the prediction of MV duration over time. We aimed at characterizing the best early scenario during the first t...
Autores principales: | Sayed, Mohammed, Riaño, David, Villar, Jesús |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8432117/ https://www.ncbi.nlm.nih.gov/pubmed/34501270 http://dx.doi.org/10.3390/jcm10173824 |
Ejemplares similares
-
Bronchoalveolar Tregs are associated with duration of mechanical ventilation in acute respiratory distress syndrome
por: Norton, Dustin L., et al.
Publicado: (2020) -
Partitioning Mechanical Ventilator Duration in COVID-19–related Acute Respiratory Distress Syndrome
por: Gendreau, Ségolène, et al.
Publicado: (2022) -
Mechanical ventilation of acute respiratory distress syndrome
por: Ochiai, Ryoichi
Publicado: (2015) -
Novel criteria to classify ARDS severity using a machine learning approach
por: Sayed, Mohammed, et al.
Publicado: (2021) -
Early application of airway pressure release ventilation may reduce the duration of mechanical ventilation in acute respiratory distress syndrome
por: Zhou, Yongfang, et al.
Publicado: (2017)