Cargando…
Planning stereoelectroencephalography using automated lesion detection: Retrospective feasibility study
OBJECTIVE: This retrospective, cross‐sectional study evaluated the feasibility and potential benefits of incorporating deep‐learning on structural magnetic resonance imaging (MRI) into planning stereoelectroencephalography (sEEG) implantation in pediatric patients with diagnostically complex drug‐re...
Autores principales: | Wagstyl, Konrad, Adler, Sophie, Pimpel, Birgit, Chari, Aswin, Seunarine, Kiran, Lorio, Sara, Thornton, Rachel, Baldeweg, Torsten, Tisdall, Martin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8432161/ https://www.ncbi.nlm.nih.gov/pubmed/32533794 http://dx.doi.org/10.1111/epi.16574 |
Ejemplares similares
-
IDEAL approach to the evaluation of machine learning technology in epilepsy surgery: protocol for the MAST trial
por: Chari, Aswin, et al.
Publicado: (2022) -
MRI profiling of focal cortical dysplasia using multi‐compartment diffusion models
por: Lorio, Sara, et al.
Publicado: (2020) -
Automation Advances in Stereoelectroencephalography Planning
por: Vakharia, Vejay N., et al.
Publicado: (2020) -
Stereoelectroencephalography electrode placement: Detection of blood vessel conflicts
por: Li, Kuo, et al.
Publicado: (2019) -
Extent of piriform cortex resection in children with temporal lobe epilepsy
por: Piper, Rory J., et al.
Publicado: (2023)