Cargando…

The Nano-War Against Complement Proteins

Targeted drug delivery and nanomedicine hold the potential promise of delivering drugs solely to target organs or cell types, thus decreasing off-target side effects and improving efficacy. However, nano-scale drug carriers face several barriers to this goal, with one of the most formidable being th...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Zhicheng, Brenner, Jacob S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8432284/
https://www.ncbi.nlm.nih.gov/pubmed/34505951
http://dx.doi.org/10.1208/s12248-021-00630-9
Descripción
Sumario:Targeted drug delivery and nanomedicine hold the potential promise of delivering drugs solely to target organs or cell types, thus decreasing off-target side effects and improving efficacy. However, nano-scale drug carriers face several barriers to this goal, with one of the most formidable being the complement cascade. Complement proteins, especially C3, opsonize not just the microbes they evolved to contain, but also nanocarriers. This results in multiple problems, including marking the nanocarriers for clearance by leukocytes, likely fouling of the targeting moieties on nanocarriers, and release of toxins which produce deleterious local and systemic effects. Here, we review how complement achieves its blockade of nanomedicine, which nanocarrier materials properties best avoid complement, and current and future strategies to control complement to unleash nanomedicine’s potential. [Image: see text]